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Direction du Transport Aérien (DTA)
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Context and motivations



Climate impact of air transportation

A particular non-CO2 effect: condensation trails
• Cold and humid areas
• Can persist and become cirrus clouds
• Warming and cooling effects

01/08/2023, 13:55 UTC, https://map.contrails.org/. 01/08/2023, 18:00 UTC, https://map.contrails.org/.
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A brief overview of contrails over the French airspace

Figure 1: Proportion of flights flying in a contrail or persistent-contrail favorable areas over France in January
and July 2021.
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A brief overview of contrails over the French airspace

Figure 2: Altitudes of sampled points (light gray),
in contrail areas (gray) or in persistent contrail
areas (dark gray) in January 2021.

Figure 3: Altitudes of sampled points (light gray),
in contrail areas (gray) or in persistent contrail
areas (dark gray) in July 2021.
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How to measure the impact of two criteria?

Emission of
greenhouse gas

Engine combustion

Persistent contrails  →
additional cloudiness

CO2 effects

Non-CO2 effects

Adapted from Simorgh et al., 2022.
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How to measure the impact of two criteria?

Climate impact metrics
Function of a time horizon

Emission of
greenhouse gas

Engine combustion

Persistent contrails  →
additional cloudiness

Radiative imbalance
→ Radiative forcing H = 100 years

H = 500 years

H = 20 years

CO2 effects

Non-CO2 effects

Adapted from Simorgh et al., 2022.
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Operational context

TOC
TOD
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Operational context

Days before the flight Hours before the flight During the flight

Large scale
planning

Flight plan
optimization
regarding

weather forecast

Conflict detection
and resolution

Emergency
trajectory

generation

Procedure
design
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Airspace context

G = (V , A)

A =
{

(u, v) | u ∈ V , v ∈ V , D ≤ du,v ≤ D
}

1 color = 1 sector

Current (2023) FRA points over France. Realistic simulated FRA points over France.
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Introduction
Research objectives



Research objectives

Propose new models and methods to take into account
contrails at the network scale

• Compute trajectories for whole traffic
• Simulate the impact of various policies
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Contributions

Literature review on contrails and related
flight-by-flight optimization

New flight-by-flight optimization method

New network-scale optimization models
and methods

Contrail-related uncertainties
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The classical Air Traffic Flow Management problem

Not a network flow problem

Objective functions
Sum of delays, number of cancellations, ...

Decisions
Departure times, routes (2D or 3D), speed modulations

Constraints
Infrastructure and airspace capacity (number of flights per time period)
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The classical Air Traffic Flow Management problem

Seminal papers: ILP

Odoni, 1987

Bertsimas and Patterson, 1998

Multi-agent approach

Weigang et al., 2010

Pre-processing (graph
pruning) + MILP

Agustin et al., 2012a

MILP +
Column generation

Richard et al., 2011

Balakrishnan and Chandran, 2014

Diao and Chen, 2018
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A model adapted to environmental impact consideration

Objective functions
Total environmental impact

Decisions
Find a trajectory for each flight (2D, 3D, 4D)

Constraints
Sector capacity, demand satisfaction
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A few words on the resolution approach
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Instance

Weather and contrail data
Extracted from ERA5 reanalysis data and
processed with ClimACCF library.
January 1st, 2022, 00:00 UTC
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Instance

Weather and contrail data
Extracted from ERA5 reanalysis data and
processed with ClimACCF library.
January 1st, 2022, 00:00 UTC

Traffic data
Extracted from Eurocontrol R&D
historical data.
March 5th, 2019, 15:00 UTC (1 hour, 474 flights)
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Results
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Conclusion

Demouge, C., Mongeau, M., Couellan, N., & Delahaye, D.
(2024).Climate-aware air traffic flow management opti-
mization via column generation. Transportation Research
Part C: Emerging Technologies, 166, 104792

Summary

• A new model for climate-aware ATFM, solved via an efficient method
• 2D or 3D optimization, with or without speed modulations and ground delays
• Comparison of various metrics and their impact on the network
• Realistic instances from public data
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Perspectives

Perspectives

• Numerical experiments on a larger geographical scale
• Numerical experiments when considering other non-CO2 effects
• Consideration of uncertainties

Climate-aware Air Traffic Flow Management 23
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Uncertainties taken into account

Aircraft-related

• Mass estimation: Wickramasinghe et al., 2016
• Departure time forecast: Sandamali et al., 2020
• Positioning errors and speed uncertainties: Kuzmenko et al., 2018

Airspace-related

• Capacity and demand forecasts: Agustin et al., 2012b; Balakrishnan and
Chandran, 2014

Weather-related

• Wind forecast: Legrand et al., 2018
• Non-CO2 effect impact forecast: Simorgh et al., 2024
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Ensemble forecast
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A key indicator: (Relative) regret

(Relative) regret

χm = z(m) − z∗
m

z∗
m
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Instance

Weather and contrails data
Extracted from ERA5 reanalysis data and
processed with ClimACCF library.
January 26th, 2019, 00:00 UTC

Traffic data
Extracted from Eurocontrol R&D
historical data.
March 5th, 2019, 12:00 UTC (1 hour, 518 flights)
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Results
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Evaluation scenario

1

2

3

4

5

6

7

8

9

10

Op
tim

iza
tio

n 
sc

en
ar

io

0.00% 2.08% 1.00% 2.75% 5.03% 3.58% 4.44% 12.92% 3.87% 2.00%

8.20% 0.00% 2.11% 3.04% 3.41% 3.63% 3.25% 11.43% 2.42% 1.93%

6.02% 1.18% 0.00% 0.87% 3.02% 2.20% 2.08% 10.73% 1.96% 0.74%

8.36% 1.66% 0.83% 0.00% 3.33% 3.05% 1.69% 9.68% 2.44% 0.78%

8.46% 2.32% 2.22% 3.48% 0.00% 1.98% 3.56% 8.99% 2.54% 1.72%

6.33% 2.17% 2.01% 3.98% 2.18% 0.00% 2.98% 10.10% 3.00% 2.55%

7.50% 1.92% 1.14% 1.10% 3.70% 2.74% 0.00% 9.83% 1.71% 1.76%

11.35% 4.15% 3.54% 3.51% 3.46% 4.00% 3.17% 0.00% 5.42% 3.30%

7.20% 1.70% 1.15% 1.88% 2.89% 2.36% 1.84% 9.09% 0.00% 1.76%

9.20% 1.15% 1.86% 2.32% 2.66% 3.68% 4.31% 10.84% 2.84% 0.00%
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Max
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12.92%3.77%

11.43%3.94%

10.73%2.88%

9.68%3.18%

8.99%3.53%

10.10%3.53%

9.83%3.14%

11.35%4.19%

9.09%2.99%

10.84%3.89%
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Results
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Optimization done in the same scenario as the evaluation

Considering uncertainties in climate-aware ATFM 34



1. Introduction

2. Climate-aware Air Traffic Flow Management

3. Considering uncertainties in climate-aware ATFM

Impact of being mistaken

Uncertainties taken into account in the cost function

Worst-case approach

4. Conclusions

Considering uncertainties in climate-aware ATFM 35



Proposition of new cost functions

Mean cost
1
M

∑M
m=1 w (m)

f ,(u,v),(tu ,tv )
wf ,(u,v),(tu ,tv ) =

Mean cost
1
M

∑M
m=1 w (m)

f ,(u,v),(tu ,tv )
wf ,(u,v),(tu ,tv ) =

Risk function
κ σc

f ,(u,v),(tu ,tv )+
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Results

wf ,(u,v),(tu ,tv ) = 1
M

M∑
m=1

w (m)
f ,(u,v),(tu ,tv ) + κ σc

f ,(u,v),(tu ,tv )
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Results

wf ,(ui ,ui+1),ti = 1
M

M∑
m=1

w (m)
f ,(ui ,ui+1),ti

+ κ σc
f ,(ui ,ui+1),ti

1 2 3 4 5 6 7 8 9 10
Evaluation scenario

1.00

1.05

1.10

1.15

1.20
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n

Optimization regarding the mean cost
Optimization done in the same scenario as the evaluation
  1
  2

Considering uncertainties in climate-aware ATFM 38



1. Introduction

2. Climate-aware Air Traffic Flow Management

3. Considering uncertainties in climate-aware ATFM

Impact of being mistaken

Uncertainties taken into account in the cost function

Worst-case approach

4. Conclusions

Considering uncertainties in climate-aware ATFM 39



General idea

Minimize the maximum cost over the given scenarios
Find the trajectories that offer the best compromise to minimize the worst-case cost
obtained by evaluating the trajectories in each scenario.

→ Using an analogous method for resolution to the deterministic one
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Results

1 2 3 4 5 6 7 8 9 10
Evaluation scenario

Worst-case
optimization 6.04% 2.21% 1.60% 2.08% 2.13% 1.41% 1.60% 0.76% 3.34% 1.71%

Mea
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ret

Max
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t

6.04%2.29%
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Results
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Conclusions and perspectives

Conclusions

• New cost functions for risk mitigation
• Model adapted for worst-case optimization using an approach similar to that of

the deterministic case
• Heuristics for a chance-constrained approach considering ensemble forecast

Perspectives

• Consider data with more members
• Considering continuous probabilistic model
• Considering other contrail-related uncertainties (e.g., ML-forecast model

uncertainties)
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