

Consideration of contrails by air navigation services and their impact on the network

Céline Demouge

Ecole Nationale de l'Aviation Civile (ENAC) - Direction des Services de la Navigation Aérienne (DSNA) - Direction du Transport Aérien (DTA)

June 27th, 2025

Introduction

Context and motivations

Climate impact of air transportation

A particular non-CO₂ effect: condensation trails

- Cold and humid areas
- Can persist and become cirrus clouds
- Warming and cooling effects

01/08/2023, 13:55 UTC, https://map.contrails.org/.

01/08/2023, 18:00 UTC, https://map.contrails.org/.

A brief overview of contrails over the French airspace

Figure 1: Proportion of flights flying in a contrail or persistent-contrail favorable areas over France in January and July 2021. Introduction

A brief overview of contrails over the French airspace

Figure 2: Altitudes of sampled points (light gray), in contrail areas (gray) or in persistent contrail areas (dark gray) in January 2021.

Figure 3: Altitudes of sampled points (light gray), in contrail areas (gray) or in persistent contrail areas (dark gray) in July 2021.

Adapted from Simorgh et al., 2022.

Non-CO₂ effects

Adapted from Simorgh et al., 2022.

How to measure the impact of two criteria?

Non-CO₂ effects

Adapted from Simorgh et al., 2022.

Operational context

Airspace context

Current (2023) FRA points over France.

Realistic simulated FRA points over France.

Introduction

Research objectives

Propose new models and methods to take into account contrails at the network scale

Propose new models and methods to take into account contrails at the network scale

• Compute trajectories for whole traffic

Propose new models and methods to take into account contrails at the network scale

- Compute trajectories for whole traffic
- Simulate the impact of various policies

Literature review on contrails and related flight-by-flight optimization

Literature review on contrails and related flight-by-flight optimization

New flight-by-flight optimization method

Literature review on contrails and related flight-by-flight optimization

* *

New network-scale optimization models and methods

New flight-by-flight optimization method

Literature review on contrails and related flight-by-flight optimization

New network-scale optimization models and methods

New flight-by-flight optimization method

Contrail-related uncertainties

- 1. Introduction
- 2. Climate-aware Air Traffic Flow Management
- 3. Considering uncertainties in climate-aware ATFM
- 4. Conclusions

1. Introduction

2. Climate-aware Air Traffic Flow Management

The classical ATFM problem

Climate-aware ATFM

Numerical experiments

3. Considering uncertainties in climate-aware ATFM

4. Conclusions

Climate-aware Air Traffic Flow Management

1. Introduction

2. Climate-aware Air Traffic Flow Management

The classical ATFM problem

Climate-aware ATFM

Numerical experiments

3. Considering uncertainties in climate-aware ATFM

4. Conclusions

Climate-aware Air Traffic Flow Management

The classical Air Traffic Flow Management problem

Not a network flow problem

Objective functions

Sum of delays, number of cancellations, ...

Decisions

Departure times, routes (2D or 3D), speed modulations

Constraints

Infrastructure and airspace capacity (number of flights per time period)

The classical Air Traffic Flow Management problem

1. Introduction

2. Climate-aware Air Traffic Flow Management

The classical ATFM problem

Climate-aware ATFM

Numerical experiments

3. Considering uncertainties in climate-aware ATFM

4. Conclusions

Climate-aware Air Traffic Flow Management

Objective functions

Total environmental impact

Decisions

Find a trajectory for each flight (2D, 3D, 4D)

Constraints

Sector capacity, demand satisfaction

A few words on the resolution approach

Climate-aware Air Traffic Flow Management

1. Introduction

2. Climate-aware Air Traffic Flow Management

The classical ATFM problem

Climate-aware ATFM

Numerical experiments

3. Considering uncertainties in climate-aware ATFM

4. Conclusions

Climate-aware Air Traffic Flow Management

Weather and contrail data

Extracted from ERA5 reanalysis data and processed with ClimACCF library. *January 1st, 2022, 00:00 UTC*

Instance

Climate-aware Air Traffic Flow Management

Weather and contrail data

Extracted from ERA5 reanalysis data and processed with ClimACCF library. *January 1st, 2022, 00:00 UTC*

Instance

Weather and contrail data

Extracted from ERA5 reanalysis data and processed with ClimACCF library. *January 1st, 2022, 00:00 UTC*

Traffic data

Extracted from Eurocontrol R&D

historical data.

March 5th, 2019, 15:00 UTC (1 hour, 474 flights)

Results

Conclusion

Demouge, C., Mongeau, M., Couellan, N., & Delahaye, D. (2024). Climate-aware air traffic flow management optimization via column generation. Transportation Research Part C: Emerging Technologies, *166*, 104792

Summary

- A new model for climate-aware ATFM, solved via an efficient method
- 2D or 3D optimization, with or without speed modulations and ground delays
- Comparison of various metrics and their impact on the network
- Realistic instances from public data

Perspectives

- Numerical experiments on a larger geographical scale
- Numerical experiments when considering other non-CO₂ effects
- Consideration of uncertainties

1. Introduction

2. Climate-aware Air Traffic Flow Management

3. Considering uncertainties in climate-aware ATFM

Impact of being mistaken

Uncertainties taken into account in the cost function

Worst-case approach

4. Conclusions

Uncertainties taken into account

Aircraft-related

- Mass estimation: Wickramasinghe et al., 2016
- Departure time forecast: Sandamali et al., 2020
- Positioning errors and speed uncertainties: Kuzmenko et al., 2018

Uncertainties taken into account

Aircraft-related

- Mass estimation: Wickramasinghe et al., 2016
- Departure time forecast: Sandamali et al., 2020
- Positioning errors and speed uncertainties: Kuzmenko et al., 2018

Airspace-related

 Capacity and demand forecasts: Agustin *et al.*, 2012b; Balakrishnan and Chandran, 2014

Uncertainties taken into account

Aircraft-related

- Mass estimation: Wickramasinghe et al., 2016
- Departure time forecast: Sandamali et al., 2020
- Positioning errors and speed uncertainties: Kuzmenko et al., 2018

Airspace-related

 Capacity and demand forecasts: Agustin *et al.*, 2012b; Balakrishnan and Chandran, 2014

Weather-related

- Wind forecast: Legrand et al., 2018
- Non-CO₂ effect impact forecast: Simorgh et al., 2024

1. Introduction

2. Climate-aware Air Traffic Flow Management

Considering uncertainties in climate-aware ATFM Impact of being mistaken

Uncertainties taken into account in the cost function

Worst-case approach

4. Conclusions

A key indicator: (Relative) regret

(Relative) regret

$$\chi_m = \frac{z^{(m)} - z_m^*}{z_m^*}$$

A key indicator: (Relative) regret

(Relative) regret

Instance

Weather and contrails data

Extracted from ERA5 reanalysis data and processed with ClimACCF library. *January 26th, 2019, 00:00 UTC*

Traffic data

Extracted from Eurocontrol R&D

historical data.

March 5th, 2019, 12:00 UTC (1 hour, 518 flights)

Results

nties in climate-aware ATEM											÷	
	i	2	3	4	5 Evaluatio	6 n scenario	7	8	9	10	regret	regret
10	9.20%	1.15%	1.86%	2.32%	2.66%	3.68%	4.31%	10.84%	2.84%	0.00%	3.89%	10.84%
9	7.20%	1.70%	1.15%	1.88%	2.89%	2.36%	1.84%	9.09%	0.00%	1.76%	2.99%	9.09%
8	11.35%	4.15%	3.54%	3.51%	3.46%	4.00%	3.17%	0.00%	5.42%	3.30%	4.19%	11.35%
0	7.50%	1.92%	1.14%	1.10%	3.70%	2.74%	0.00%	9.83%	1.71%	1.76%	3.14%	9.83%
ptimizatio	6.33%	2.17%	2.01%	3.98%	2.18%	0.00%	2.98%	10.10%	3.00%	2.55%	3.53%	10.10%
on scenari	8.46%	2.32%	2.22%	3.48%	0.00%	1.98%	3.56%	8.99%	2.54%	1.72%	3.53%	8.99 %
4	8.36%	1.66%	0.83%	0.00%	3.33%	3.05%	1.69%	9.68%	2.44%	0.78%	3.18%	9.68%
3	6.02%	1.18%	0.00%	0.87%	3.02%	2.20%	2.08%	10.73%	1.96%	0.74%	2.88%	10.73%
2	8.20%	0.00%	2.11%	3.04%	3.41%	3.63%	3.25%	11.43%	2.42%	1.93%	3.94%	11.43%
1	0.00%	2.08%	1.00%	2.75%	5.03%	3.58%	4.44%	12.92%	3.87%	2.00%	3.77%	12.92%

Results

1. Introduction

2. Climate-aware Air Traffic Flow Management

3. Considering uncertainties in climate-aware ATFM

Impact of being mistaken

Uncertainties taken into account in the cost function

Worst-case approach

4. Conclusions

$$w_{f,(u,v),(t_u,t_v)} = \frac{\text{Mean cost}}{\frac{1}{M}\sum_{m=1}^{M} w_{f,(u,v),(t_u,t_v)}^{(m)}}$$

$$w_{f,(u,v),(t_u,t_v)} = \frac{Mean cost}{\frac{1}{M} \sum_{m=1}^{M} w_{f,(u,v),(t_u,t_v)}^{(m)}}$$

$$w_{f,(u,v),(t_u,t_v)} = \frac{Mean \cos t}{\frac{1}{M} \sum_{m=1}^{M} w_{f,(u,v),(t_u,t_v)}^{(m)}} + \frac{Risk function}{\kappa \sigma_{f,(u,v),(t_u,t_v)}^c}$$

Results

$w_{f,(u,v),(t_u,t_v)}=\frac{1}{M}$	$\sum_{f,(u,v),(t_u,t_v)}^{M} w_{f,(u,v),(t_u,t_v)}^{(m)}$	$+\kappa$	$\sigma^{c}_{f,(u,v),(t_u,t_v)}$
	m=1		

0.0 -	4.45%	1.4%	0.775%	1.03%	1.51%	1.35%	1.01%	3.69%	0.859%	1.2%	1	.73%	4.45%
0.01 -	4.39%	1.41%	0.787%	1.05%	1.52%	1.35%	1.01%	3.69%	0.845%	1.22%	1	.73%	4.39%
0.02 -	4.31%	1.43%	0.799%	1.05%	1.55%	1.38%	1.01%	3.66%	0.867%	1.24%	1	.73%	4.31%
0.03 -	4.26%	1.44%	0.807%	1.06%	1.57%	1.39%	1.02%	3.62%	0.876%	1.25%	1	.73%	4.26%
0.1-	4.17%	1.55%	0.901%	1.13%	1.63%	1.38%	1.04%	3.34%	0.959%	1.37%	1	.75%	4.17%
0.2 -	3.72%	1.65%	0.999%	1.31%	1.79%	1.27%	1.13%	3.36%	1.11%	1.54%	1	.79%	3.72%
0.3 -	3.71%	1.81%	1.14%	1.43%	1.82%	1.26%	1.2%	3.1%	1.23%	1.69%	1	.84%	3.71%
0.4 -	3.55%	2.01%	1.19%	1.53%	1.9%	1.33%	1.21%	3.03%	1.39%	1.86%		1.9%	3.55%
0.5	3.24%	2.32%	1.34%	1.74%	2.01%	1.46%	1.28%	3.01%	1.65%	2.11%	2	.02%	3.24%
0.6	3.2%	2.5%	1.51%	1.98%	2.11%	1.53%	1.42%	2.84%	1.86%	2.31%	2	.13%	3.2%
0.7 -	3.21%	2.64%	1.64%	2.18%	2.17%	1.55%	1.54%	2.73%	2.06%	2.46%	2	.22%	3.21%
0.8 -	3.19%	2.75%	1.77%	2.36%	2.23%	1.54%	1.6%	2.79%	2.13%	2.62%		2.3%	3.19%
0.9 -	3.15%	2.87%	1.83%	2.43%	2.35%	1.62%	1.64%	2.83%	2.16%	2.75%	2	.36%	3.15%
1.0 -	3.14%	2.95%	1.91%	2.52%	2.42%	1.69%	1.69 %	2.83%	2.25%	2.84%	2	.42%	3.14%
2.0 -	4.62%	5.46%	4.17%	4.83%	3.54%	2.72%	2.9%	3.58%	3.67%	5.31%	4	.08%	5.46%
3.0 -	5.97%	7.39%	5.89%	6.84%	4.69%	3.68%	4.26%	4.33%	5.49%	7.25%	5	.58%	7.39%
6.0-	9.43%	11.7%	9.77%	11.1%	8.5%	6.48%	7.19%	7.02%	9.81%	11.7%	9	.27%	11.7%
7.0 -	10.4%	12.9%	10.9%	12.1%	9.48%	7.42%	8.09%	7.72%	10.9%	12.9%	1	0.3%	12.9%
8.0-	11.3%	14.3%	12%	13.4%	10.7%	8.37%	9.11%	8.62%	12.2%	14.3%	1	1.4%	14.3%
9.0-	11.8%	15%	12.6%	14%	11.3%	8.9%	9.6%	9.1%	12.8%	14.9%		12%	15%
10.0 -	12.3%	15.5%	13.1%	14.4%	11.8%	9.38%	9.98%	9.56%	13.3%	15.5%	1	2.5%	15.5%
20.0 -	19.3%	23.6%	20.4%	22.1%	19%	15.9%	16.4%	15.9%	20.9%	23.5%	1	9.7%	23.6%
	1	ż	ż	4	5	6	Ż	8	9	10		ě	ě.
	Evaluation scenario										,0	9°	edie
											ar	at	
											Ner	400	

Results

$$w_{f,(u_i,u_{i+1}),t_i} = \frac{1}{M} \sum_{m=1}^M w_{f,(u_i,u_{i+1}),t_i}^{(m)} + \kappa \ \sigma_{f,(u_i,u_{i+1}),t_i}^c$$

Considering uncertainties in climate-aware ATFM

1. Introduction

2. Climate-aware Air Traffic Flow Management

3. Considering uncertainties in climate-aware ATFM

Impact of being mistaken

Uncertainties taken into account in the cost function

Worst-case approach

4. Conclusions

Minimize the maximum cost over the given scenarios

Find the trajectories that offer the best compromise to minimize the worst-case cost obtained by evaluating the trajectories in each scenario.

 \rightarrow Using an analogous method for resolution to the deterministic one

Results

Considering uncertainties in climate-aware ATFM

Conclusions and perspectives

Conclusions

- New cost functions for risk mitigation
- Model adapted for worst-case optimization using an approach similar to that of the deterministic case
- Heuristics for a chance-constrained approach considering ensemble forecast

Conclusions and perspectives

Conclusions

- New cost functions for risk mitigation
- Model adapted for worst-case optimization using an approach similar to that of the deterministic case
- Heuristics for a chance-constrained approach considering ensemble forecast

Perspectives

- Consider data with more members
- Considering continuous probabilistic model
- Considering other contrail-related uncertainties (*e.g.*, ML-forecast model uncertainties)

1. Introduction

2. Climate-aware Air Traffic Flow Management

3. Considering uncertainties in climate-aware ATFM

4. Conclusions

Models and methods to take into contrails at the network scale

Conclusions

Methods appropriate for ANSP and Network Manager

> Compute trajectories at different time scale / geographical scales

Models and methods to take into contrails at the network scale

Conclusions

References i

- Agustin, A., Alonso-Ayuso, A., Escudero, L., & Pizarro, C. (2012a). On air traffic flow management with rerouting. Part I: Deterministic case. European Journal of Operational Research, 219(1), 156–166.
- Agustin, A., Alonso-Ayuso, A., Escudero, L., & Pizarro, C. (2012b). On air traffic flow management with rerouting. Part II: Stochastic case. European Journal of Operational Research, 219(1), 167–177.
- Balakrishnan, H., & Chandran, B. G. (2014). **Optimal large-scale air traffic flow management.** Massachusetts Institute of Technology, Technical Report.
- Bertsimas, D., & Patterson, S. S. (1998). The air traffic flow management problem with enroute capacities. Operations Research, 46(3), 406–422.
- Demouge, C., Mongeau, M., Couellan, N., & Delahaye, D. (2024). Climate-aware air traffic flow management optimization via column generation. Transportation Research Part C: Emerging Technologies, 166, 104792.

References ii

Diao, X., & Chen, C.-H. (2018). A sequence model for air traffic flow management rerouting problem. Transportation Research Part E: Logistics and Transportation Review, 110, 15–30.
Kuzmenko, N. S., Ostroumov, I. V., & Marais, K. (2018). An accuracy and excitation of aircraft problem.

availability estimation of aircraft positioning by navigational aids [Kiev, Ukraine]. 2018 IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), 36–40.

Legrand, K., Puechmorel, S., Delahaye, D., & Zhu, Y. (2018). Robust aircraft optimal trajectory in the presence of wind. IEEE Aerospace and Electronic Systems Magazine, 33(11), 30–38.

Odoni, A. R. (1987). The flow management problem in air traffic control. Flow control of congested networks, 269–288.

- Richard, O., Constans, S., & Fondacci, R. (2011). Computing 4D near-optimal trajectories for dynamic air traffic flow management with column generation and branch-and-price. Transportation Planning and Technology, 34(5), 389–411.
- Sandamali, G. G. N., Su, R., & Zhang, Y. (2020). Flight routing and scheduling under departure and en route speed uncertainty. IEEE Transactions on Intelligent Transportation Systems, 21(5), 1915–1928.

Simorgh, A., Soler, M., Dietmüller, S., Matthes, S., Yamashita, H., Castino, F., & Yin, F. (2024). Robust 4D climate-optimal aircraft trajectory planning under weather-induced uncertainties: Free-routing airspace. Transportation Research Part D: Transport and Environment, 131, 104196.

- Simorgh, A., Soler, M., González-Arribas, D., Matthes, S., Grewe, V., Dietmüller, S., Baumann, S., Yamashita, H., Yin, F., Castino, F., Linke, F., Lührs, B., & Meuser, M. M. (2022). A comprehensive survey on climate optimal aircraft trajectory planning. Aerospace, 9(3), 146.
- Weigang, L., Dib, M. V. P., Alves, D. P., & Crespo, A. M. F. (2010). Intelligent computing methods in air traffic flow management. Transportation Research Part C: Emerging Technologies, 18(5), 781–793.
- Wickramasinghe, N. K., Brown, M., Miyamoto, Y., & Miyazawa, Y. (2016). Effects of aircraft mass and weather data errors on trajectory optimization and benefits estimation [San Diego, USA]. AIAA Modeling and Simulation Technologies Conference, 0166.