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The wonder and importance of the aviation industry

Why do we need air transportation services?

® The demand for air travel (~ 5 billion passengers)

® The demand for the shipment of goods by air (~ 61 million tonnes)

Major economic force: 87.7 million jobs

® 11.3 million direct jobs
(e.g., airlines, air navigation service providers, and airports) b

® 18.1 million indirect jobs
(e.g., purchases of goods and services in the air transport industry supply chain)

forecast for 2024

® 13.5 million induced jobs
(e.g., retail, customer goods, and services supported by the spending power)

® 44 .8 million tourism jobs
(e.g., aviation-enabled tourism related jobs)

Air traffic size in 2019
1,478 airlines, 3,780 airports, 48,044 routes

Source: Air Transport Action Group (ATAG) https://atag.org/facts-figures Image source: https://www.statista.com (data from IATA)
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Potential negative impact of innovation

“The great accomplishments of the eighteenth through early twentieth centuries nevertheless created
their own set of shortfalls or negative impacts on society.”

— Dr. Subra Suresh, Dean of the MIT School of Engineering (2007-2010)
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Potential negative impact of innovation
With an example in the air transportation industry

“The great accomplishments of the eighteenth through early twentieth centuries nevertheless created
their own set of shortfalls or negative impacts on society.”

— Dr. Subra Suresh, Dean of the MIT School of Engineering (2007-2010)

The rapid growth of air transportation has increased environmental concerns ]
Noise pollution Gaseous exhaust emission from jet engine Non-CO;, aviation emissions
® [anding and take-off phases (LTO) ® From complete (or non-ideal) fuel combustion ® Contrails
® Annoyance, sleep disturbance ® Accounts for 2.5% of the global CO, emissions ® Aviation-induced clouds
® A major constraint on airport planning ® Contributes around 4% to global warming ® NO;, emissions
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Designing aircraft and its operations has become a superdisciplinary problem
externalities impacts

Sustainable: “Capable of being maintained or continued at a certain rate or level” (Oxford Dict.)

Sustainable aviation: reducing and mitigating the environmental impact of aviation

. Sy @‘uv

NS
® Operational changes
® Technological changes Requires a concerted effort across government, industry,
® Policy changes academia; and also across different solutions.
® Shift towards alternative fuel

Image sources: https://store.icao.int/en/traffic-flow-global-data- shape-file, boeing.com
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Designing aircraft and its operations has become a superdisciplinary problem
externalities impacts

Sustainable: “Capable of being maintained or continued at a certain rate or level” (Oxford Dict.)

Sustainable aviation: reducing and mitigating the environmental impact of aviation

. Sy @‘uv

Operational changes 4

Technological changes v Requires a concerted effort across government, industry,

Policy changes academia; and also across different solutions.

Shift towards alternative fuel

\.

Image sources: https://store.icao.int/en/traffic-flow- global- data- shape-file, boeing.com
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Operational and technological changes to support sustainable aviation efforts
A system level assessment is needed to truly evaluate the benefits

Examples in technological changes

Improvements in propulsion systems

® [In the 1970s: high by-pass ratio engine doubled fuel efficiency

® Hydrogen-powered aircraft
® Electric/hybrid-electric aircraft

Improvements in aircraft designs

® Shape optimization for drag reduction

® Wingtip devices: winglets, sharklets, etc.

® New configurations: strut-braced wing, BWB, etc.

Alternative fuel

® Sustainable aviation fuels

Examples in operational changes

Flight operation strategies
® Optimize flight path/flight planning
® Optimize fuel loading decision

® Reduce engine use (e.g., during taxi)

Changes in air traffic management/airspace

® Flexible air traffic management

® Apply continuous descent/climb operations

Ground support improvements

® Airport infrastructure improvements

® Aircraft maintenance improvements
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How the analyses and optimization of aircraft and operations are performed
Can siloed analyses achieve truly optimum designs?

Operation-unaware aircraft design

® Aircraft is designed at its design mission

® However, it is used for various missions in operations

® Fuel economy: the amount of fuel burned per payload per

range (in liters/kg/m)

Fuel economy vs flight range
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Fuel vs noise

® Reducing 1-2 dB in a long-range aircraft traded a 1-2%
increment in fuel burn?

® Aircraft's drag and noise minimizations do not lead to the
same optimal shapeb

2M. Pacull. “Transport Aircraft Noise Technologies™. In: Proceedings of the International
Symposium: Which Technologies for Future Aircraft Noise Reduction? Association
Aéronautique et Astronautique de France. 2002.

bBeckett Y. Zhou, Tim Albring, Nicolas R. Gauger, Thomas D. Economon,

Francisco Palacios, and Juan J. Alonso. “A Discrete Adjoint Framework for Unsteady
Aerodynamic and Aeroacoustic Optimization”. In: 16th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference. Dallas, TX, 2015.
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Designing the next-generation aircraft and operations

Design as a decision-making process

® Requires an abstraction to describe the product/service/system

The models need to be as realistic as possible

Multidisciplinary design optimization (MDO)
® Accounts for the coupling in the system

® Automatically performs the optimal interdisciplinary tradeoffs

The MDO problem formulation also needs to be realistic to yield truly relevant results

How to account for uncertainties and operational variability?

Infuse data into the model derivation and MDO problem formulations.

Fourth paradigm of science — using data exploration to unify data, theory, and simulation?

3Tony Hey, Stewart Tansley, and Kristin Tolle, eds. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, 2009.
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Presentation
(14
Overview ”

04

05

Data-enhanced fuel assessment models
Operation-aware aerodynamic shape optimization
Physics-supported air transportation modeling
Data-free, non-physical models

Summary and conclusion
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Fuel assessment models to
serve different purposes (and

different stakeholders)
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Deriving fuel assessment models
We need different models for different purposes

What makes realistically modeling fuel burn complex?

® Different aircraft types have different fuel characteristics

® The “performance factor” of each aircraft should be considered (e.g.,
due to ageing)

® Aijrcraft fly different routes — even for the same origin-destination pair e = e L
— with different proportions of climb, cruise, and descent phases

Why do we need different models for different purposes?
Purpose, level of details, available inputs, available computational time

HKG - CGK

® To support aircraft design optimization: the model needs to emulate S ket
detailed physics and takes aircraft design parameters as inputs

® To support air transportation policy assessment: the total aggregate
fuel burn is required and needs to include air traffic frequency and
movements

® For airlines: supporting fuel budgeting and planning, most of the
data/inputs are in-house
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Fuel assessment models developed in-house

Most works mentioned below were done at The Hong Kong University of Science and Technology (HKUST)

To support policy analysis: aggregate fuel burn calculation®
To support airline’s fuel budgeting: reserve fuel estimation?, fuel estimation for new sectors’

To support detailed aircraft design process: surrogate-based flight mission analysis* and its enhancement with data-driven mission
parameterization®. (The framework is extended to cater for electric amphibious aircraft®)

® To support flight path optimization: dynamic flight-simulation with data-driven constraints and boundary conditions’

1 Jefry Yanto and Rhea P. Liem. “Aircraft fuel burn performance study: a data-enhanced modeling approach”. In: Transportation Research Part D: Transport and Environment 65 (2018)
pp. 574-595. por: 10.1016/j.trd.2018.09.014.

2Yuan Lyu, Jefry Yanto, and Rhea P. Liem. “Aircraft Reserve Fuel Study with High-Fidelity Fuel Approximation Model”. In: AJAA Aviation. AIAA 2019-3509. Dallas, TX, 2019. D01
10.2514/6.2019-3509.

3Jefry Yanto and Rhea P. Liem. “Cluster-Based Aircraft Fuel Estimation Model for Effective and Efficient Fuel Budgeting on New Routes”. In: Acrospace 9 (2022), p. 624. DOI
10.3390/aerospace9100624.

4Rhea P. Liem, Charles A. Mader, and Joaquim R. R. A. Martins. “Surrogate Models and Mixtures of Experts in Aerodynamic Performance Prediction for Mission Analysis”. In: Aerospace
Science and Technology 43 (2015), pp. 126-151. por: 10.1016/j.ast.2015.02.019.

Svuan Lyu and Rhea P. Liem. “Flight performance analysis with data-driven mission parameterization: mapping flight operational data to aircraft performance analysis”. In: Transportation
Engineering 2.100035 (2020). po1: 10.1016/j.treng.2020.100035.

6 James M. Shihua, Yuan Lyu, and Rhea P. Liem. “Multidisciplinary Design and Mission Analysis of an Electric Amphibious Flying Vehicle”. In: AIAA AVIATION Forum. 2023. Dol
10.2514/6.2023-3907.

7Dajung Kim, Arjit Seth, and Rhea P. Liem. “Data-enhanced dynamic flight simulations for flight performance analysis”. In: Acrospace Science and Technology 121.107357 (2022). por
10.1016/j.a5t.2022.107357.
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Fuel assessment with detailed surrogate-based flight mission analysis®
Considering geometry, aerodynamics, mission, engine, atmospheric conditions

Aircraft Y an
geometry e £ cui Descent
g_v ruise escen: Fuel b_urn,

Climb emissions

. Detailed mission analysis procedure
Mis: Takeoff Landing -
parameters o Aircraft operating

cost

- . . o Environmental

Engine Engine model Atmospheric Weight-and-balance impacts
parameters model model ) )
] ] o Policy analysis

Aircraft components
and weights

Atmospheric
conditions

® Analyze all mission phases, from takeoff to landing, by solving the range equation using numerical integration
® Computational challenge: it requires millions of aerodynamic performance evaluations

® Solutions: use surrogate models to approximate the aerodynamic force and moment coefficients

8Rhea P. Liem, Charles A. Mader, and Joaquim R. R. A. Martins. “Surrogate Models and Mixtures of Experts in Aerodynamic Performance Prediction for Mission Analysis”. In: Aerospace
Science and Technology 43 (2015), pp. 126-151. por: 10.1016/j.ast.2015.02.019.
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Data-enhanced flight mission analysis procedure’
Mapping airline flight data into flight simulation

Complementarity between data- and physics-based models

® Data-based models: not interpretable, not transparent enough

AIRLINE DATA FLIGHT PERFORMANCE ANALYSIS WITH

Ny Right) Atiguge DATA-DRIVEN MISSION PARAMETERIZATION ® Physics-based models: cannot model the operational variations

P= 12N

(Landing weight),

Hybrid approach: combining the strengths of both models

(Flight tin

(Average enronte wind), ® Use a physics-based model that can take flight operational data
as inputs, simulate the flights, and provide useful information

such as fuel burn

model model ‘model

(Actual fuel bur), T
J - —— ® Use actual flight trajectory data’ to parameterize the mission
o } [ e R i profiles in the derived flight performance analysis module, to

better represent the flight trajectory variation in each
origin-destination (OD) pair

istribution

Y

The data are obtained under the Data Partnership Agreement between Cathay Pacific Airways
Ltd and the Department of Mechanical and Aerospace Engineering, HKUST

9Yuan Lyu and Rhea P. Liem. “Flight performance analysis with data-driven mission parameterization: mapping flight operational data to aircraft performance analysis”. In: Transportation
Engineering 2.100035 (2020). po1: 10.1016/j.treng.2020.100035.
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Mission parameterization
An example with Hong Kong to New York (HKG-JFK) flights

Flight trajectory variation
Cruise step-climb profiles and altitudes

Constant
Mach S TR
limb e oo
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Model enhancement substantially improves fuel approximation accuracy'°
The model is validated by comparing calculated fuel against airline data

List of scenarios

Scenario 1 Nominal case, assuming that no flight information is available v RMSE
Scenario 2 Assume that landing weight, flight time, and ground speed 30
information are available to characterize different flights
. . . . . 25
Scenario 3 Add wind correction to the previous scenario to account for 5
. . . S 21.65
wind effect on actual speed and flying distance P
s 20.63
Scenario 4 Perform the flight performance analyses with the full g
data-driven mission parameterization 21 1411
El
2
2w 11.97 10.14
. 9.69
Observations
. . . . 5
® Adding more features — improves the fuel burn estimation accuracy % -
1
® |nfusing data into a physics-based model yields more realistic results 0 1.04
Scenario 1 Scenario 2 Scenario 3 Scenario 4
1Ovyan Lyu and Rhea P. Liem. “Flight performance analysis with data-driven mission parameterization: mapping flight operational data to aircraft performance analysis”. In: Transportation

Engineering 2.100035 (2020). po1: 10.1016/j.treng.2020.100035.
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How can this model help improve aircraft design process?
Enables incorporating flight operational aspect into the problem formulation

(The distributions below are obtained from the

@ Generate realistic flight condition distributions from flight data o ;
data-enhanced mission analysis)

® Simulate flight operations based on mission profile and aircraft parameters

® Obtain flight condition information at different points along the mission profile HKG-JFK cruise HKG-JFK full mission

® Analyzing multiple flight missions "™ realistic flight condition distributions

Mission data Flight-condition data e gee
“ Surrogate-based SRR R s e e e
g mission analysis Hach ach
g, P HKG-TPE cruise HKG-TPE full mission
H — - -
Ezn 08
A Sos
ange (i) w
os H
[ 2 Accurately evaluate flight fuel consumption os m

® To be used in objective function formulation and/or post-optimality analyses
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Data-driven dynamic flight simulation model'! p—
With detailed segment-by-segment analysis [ i = T —— }

Equations of motion SEGMENTATION MODEL DATA PROCESSING
(with a point-mass rigid body assumption) [ \
\ v v
,—_:T + 'EA + mE _ m(3+ & x \7) A A h Vertcal Speed  Airpeed Fiight Range
. AN AAAA
Changes in velocity AV and position AF are calculated via numerical integration AAN A A

Altitude Mach Number  Aceeleration

Data-driven constraints

Use QAR data to extract segments’ boundary conditions and flight simulation -
'HYSICS

constraints (speed and altitude profiles). SEGMENT-BASED FLIGHT SIMULATION

){. Flight Segments

Validation P
Compare the flight time and fuel consumption to those in QAR data (< 5% error) 4

Ri=0 [l
) ) Constant CAS
Flight Dynamics GER

This model has been used in flight path planning ! 7= Yorden spoot

Accelorated Flight Range
£ = Flight Range

Path | Fuel | Noise | Flight States 72 = Vortical Specd.
1 = Altitude

10 pajung Kim, Arjit Seth, and Rhea P. Liem. “Data-enhanced dynamic flight simulations for flight performance
analysis”. In: Aerospace Science and Technology 121.107357 (2022). por: 10.1016/j.ast.2022.107357.
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Data-driven dynamic flight simulation model'!
With detailed segment-by-segment analysis Result example: HKG-LHR flights

Equations of motion
(with a point-mass rigid body assumption)

I?T+I?A+m§: m(é’-‘,—&jx \7)

Changes in velocity AV and position AF are calculated via numerical integration

Data-driven constraints

Use QAR data to extract segments’ boundary conditions and flight simulation

constraints (speed and altitude profiles).

Validation
Compare the flight time and fuel consumption to those in QAR data (< 5% error)

This model has been used in flight path planning

10 pajung Kim, Arjit Seth, and Rhea P. Liem. “Data-enhanced dynamic flight simulations for flight performance
analysis”. In: Aerospace Science and Technology 121.107357 (2022). por: 10.1016/j.ast.2022.107357.
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Operation-aware aerodynamic
shape optimization for
fuel-efficient aircraft design

Imperial College London



Aircraft design as a numerical optimization problem

Conceptual design stage

Preliminary sizing, as a function of the top level aircraft requirements (TLARs).
Detailed design stage

Aerodynamic shape optimization (ASO) v

Minimize Drag (as a proxy of fuel)
With respect to Wing geometry parameters
Subject to Lift constraint

Moment constraint
Geometry constraints

Aerodynamic solver (Euler)

Aerostructural optimization

This optimization includes structural design variables and constraints. /’ _X\

Displacements Forces

ASO and aerostructural optimizations are traditionally per-
formed at the nominal condition. wﬂ solver (Finite Element)

P
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Expanding ASO capability to consider actual aircraft operations
From single-point to multipoint to mission-based/operation-aware

Single-point ® 9 Multipoint ® Towards an operation-aware multipoint ASO formulation

Mission data Flight-condition data

Surrogate-based
mission analysis

Payload (1000 kg)

ach

® Multipoint optimization: avoids off-design
performance degradation?
® Obtain flight condition distribution from actual flight data

® Early work: relied only on payload and range data, and focused on cruise??

N N
fob =ijf,- Zw,-= 1
i=1 i=1

® Latest work: more data, better mission analysis, aided with ML

L] Key cha"enges; find the right points and Weights 3Rhea P. Liem, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. “Multimission Aircraft Fuel Burn
Minimization via Multipoint Aerostructural Optimization”. In: A/AA Journal 53.1 (2015), pp. 104-122. DOI
10.2514/1.J052940.

3Mark Drela. “Pros and Cons of Airfoil Optimization”. In: Frontiers of CFD bRhea P. Liem, G. K. W. Kenway, and Joaquim R. R. A. Martins. “Expected Drag Minimization for
1998. Ed. by D. A. Caughey and M. M. Hafez. World Scientific, 1998, Aerodynamic Design Optimization Based on Aircraft Operational Data”. In: Aerospace Science and
pp. 363-381. Technology 63 (2017), pp. 344-362.
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Multipoint ASO - Formulating the expectation integral approximation'?

Approximating the expected value of Cp in the [Mach, C;] space:

E(Co] = [ Co (M, ) p(M, C)dMdC,
Q

~ > > TuCo (M, Cu,) p (M, Cuy)

i=1 k=1

Using the generated flight-condition distribution to derive p (M;, Cy,)

Mach

Key results

® More accurate expectation integral
approximation — is it important?

® Not much difference with other
multipoint optimization results in terms
of range performance (v/ML/D)
Is it, then, worth doing?

Case 1p
Case 3pM (trap, uni)
Case 3pCL (trap, uni)
Case 5p (mid, uni)
ase 5p (mid, b

Case 5p (mid, hist)
Case 9p (trap, uni)
Case 9p (mid, uni
Case 9p (mid, hist)

o
[}
05 'y
045 \
n L L ,
b 33 081 3 3
Mach

12Rhea P. Liem, G. K. W. Kenway, and Joaquim R. R. A. Martins. “Expected Drag Minimization for Aerodynamic Design Optimization Based on Aircraft Operational Data”. In: Acrospace

Science and Technolo,

3 (2017), pp. 344-362
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Multipoint ASO - Formulating the expectation integral approximation'?

Approximating the expected value of Cp in the [Mach, C;] space: Key results
E[Cp] = Jf Cp (M, C) p(M, C) dMdC, ® More accurate expectation integral
Q approximation — is it important?
"o ® Not much difference with other
~ Z Z Cp (Mi, Cu, ) p (M, C1, ) multipoint optimization results in terms
=1 k=1 of range performance (v/ML/D)
Is it, then, worth doing?
Using the generated flight-condition distribution to derive p (I\/l,-, CLk) oss cant
., Cate 901 rap )
* ccsm,;‘,
05 Gase 9 (mid,hist)
aso 3
05 ‘s .
0.45| 0.45' \
o b5 ok nﬁfén o Tk

12Rhea P. Liem, G. K. W. Kenway, and Joaquim R. R. A. Martins. “Expected Drag Minimization for Aerodynamic Design Optimization Based on Aircraft Operational Data”. In: Acrospace
Science and Technology 63 (2017), pp. 344-362
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Multipoint ASO - Formulating the expectation integral approximation'?

Approximating the expected value of Cp in the [Mach, C;] space: Key results
E[Cp] = jf Cp (M, C) p(M, C) dMdC, ® More accurate expectation integral
Q approximation — is it important?
n.n ® Not much difference with other
~ Z Z Cp (Mi, Cu, ) p (M, C1, ) multipoint optimization results in terms
=1 k=1 of range performance (v/ML/D)
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12Rhea P. Liem, G. K. W. Kenway, and Joaquim R. R. A. Martins. “Expected Drag Minimization for Aerodynamic Design Optimization Based on Aircraft Operational Data”. In: Acrospace
Science and Technology 63 (2017), pp. 344-362
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Multipoint ASO - Formulating the expectation integral approximation'?

Approximating the expected value of Cp in the [Mach, C;] space: Key results
E[Cp] = jf Cp (M, C) p(M, C) dMdC, ® More accurate expectation integral
Q approximation — is it important?
n.n ® Not much difference with other
~ Z Z Cp (Mi, Cu, ) p (M, C1, ) multipoint optimization results in terms
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12Rhea P. Liem, G. K. W. Kenway, and Joaquim R. R. A. Martins. “Expected Drag Minimization for Aerodynamic Design Optimization Based on Aircraft Operational Data”. In: Acrospace
Science and Technology 63 (2017), pp. 344-362
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Multipoint aerostructural optimization to minimize weighted average fuel burn
Converting a multimission problem into a multipoint one*?

Objective function Conversion into a multipoint problem through linearization

Multimission fuel burn
N

_ oW, W,
Wha OWhel OWiyel
N

> ap, * T aw,

=1

W

Q

weighted average fuel-burn
from multiple missions

drag forces at multiple
flight operating points

N
> 1pDp + AW,

=1

fobj

Payload (1000 kg)

® Perform the mission analysis offline to calculate fuel burn
® Perform first order Taylor series expansion to compute 11, and A

® Kriging samples (for the mission analysis) become the flight condition to evaluate D,

L L n L
2000 2000 6000 8000
Range (n mile)

13Rhea P. Liem, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. “Multimission Aircraft Fuel Burn Minimization via Multipoint Aerostructural Optimization”. In: AIAA Journal 53.1
(2015), pp. 104-122. por: 10.2514/1.J052940.
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Benefits of performing operation-aware multipoint aerostructural optimization
(Only payload and range information, and only cruise in mission analysis)

1. More consistent performance improvement across different flight conditions

160 O =0.45 €, =0.50 C, =0.55

M_/*—\

Drag (counts)

IBD%J Multi-point

&
(Nominal Mach]

087 o5 ar 3 087 5 o7 o5 08z o5 6% 3 86
Mach number
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Benefits of performing operation-aware multipoint aerostructural optimization
(Only payload and range information, and only cruise in mission analysis)

1. More consistent performance improvement across different flight conditions

2. Improved overall fuel efficiency across different flight missions

Single-point optimization Multipoint optimization
F ——— Dot ueloun k)
2500 2500
sof LB e sk - B T
r o225 s ot 20
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: F i H a0
g L g
€ woff a g
T g 3
g [ s 8
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& &
10, :E
fe
=] 1 1 1 1 1
00 a0 e000 8000 000
Range (n mile)

The multipoint optimization reduces fuel burn by 6.6%, whereas the single-point one only reduces it by 1.7%.
“The airline industry spends $200 billion on fuel per year, so a 2% savings is $4 billion.” — Bill Ruh, VP for software at GE Research
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Data-driven, operation-aware ASO with machine learning and more data'®
Using flight conditions generated by data-enhanced mission analysis

Much richer flight condition distribution, thanks to higher-fidelity model and more detailed data

Flight condition distribution obtained from the QAR data of 500 flights'*. Wing geometry
NASA CRM configuration (L3 mesh).

Aerodynamic solver

ADFlow (from the MDO Lab's — at the
University of Michigan — MACH-Aero
framework) (RANS + Spalart-Allmaras
turbulence model).

Altitude (km)

i
A
EH
2

* LogNorm of flight condition counts
LogNorm of flight condition counts

RRRRRRRRR Key performance evaluation metric
Mach number Fuel consumption of 100 representative flight
missions.

o5 o5

05 07
Mach number

Flight condition information: [M, h, o, C;] (from a total of N timestamps).

14The flight data are obtained under the Data Partnership Agreement between Cathay Pacific Airways Ltd. and the Dept. of Mechanical and Aerospace Engineering, HKUST (2020-2026).

15 Aobo Yang, Yuan Lyu, Jichao Li, and Rhea P. Liem. “Operation-Aware Aircraft Wing Design Using Cluster-Based Multipoint Aerodynamic Shape Optimization”. In: Journal of Aircraft (2025)
(Article in advance). Dor: 10.2514/1.C038291.

Imperial College London Designing Next-Generation Aircraft and Operations for Sustainable Aviation: from Data and Models to Decisions 23/42 17/06/2025


https://doi.org/10.2514/1.C038291

Multipoint ASO formulation - with a data-driven composite objective function

Function /variable Description Bounds Quantity
Minimize fobj = Zle WkCDk Weighted-average drag coefficient -
With respect to Angle of attack [1.0,3.5] K
A Coefficients of wing shape modes [Alowers Aupper] 50
Ciwist Wing twists [—1.0,1.0] 7
Total design variables 57+ K
Subject to C, — Cz‘k >0 Lift constraints - K
Cy > —0.17 Moment constraint at nominal condition - 1
VYV 2 Vinitial Volume constraint - 1
t > 0.98 X tinitial Thickness constraints - 750
Total constraints 752 4+ K
Important building blocks
® Data-enhanced flight mission analysis procedure: to obtain C; at each flight condition and evaluate fuel consumption [Lyu and Liem, 2020]

® Compact modal parameterization for the wing geometry: to ensure that the optimization is computationally efficient!®

® [NEW] Cluster-based multipoint formulation: to derive the data-driven objective function

16J\chao Li and Menggqi Zhang. “On deep-learning-based geometric filtering in aerodynamic shape optimization™. In: Aerospace Science and Technology 112 (May 2021), p. 106603. DO!
10.1016/j.ast.2021.106603.
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Data-driven, cluster-based multipoint objective function f,,; = Z,’le wiCp,
Use QAR-based flight condition distribution to determine the points and weights

Data preprocessing (x = [M, h,r, C(] — Pp) 0.65
® Normalization — [—1,1] 0.60
® Orthogonalization with Principal Component Analysis (PCA) 0.55

0.50

Deriving objective function’s points and weights Soas

® Probability function of Gaussian mixture model (GMM) 0.40
K 0.35
pomm(p) = D N (p | 1y, COV) 0.30

k=1

0.60 0.65 0.70 0.75 0.80 0.85

® 7, is the mixing coefficient, p, is the cluster centroid (in terms of p)

® Multipoint objective function:

Imperial College London

K K
forj = > wiCp, = > mkCp (1 > X),
=1 k=1

Mach number

(The symbols are sized based on their weights.)

® Diamonds: ADODG 9-point case
® Blue diamond: nominal case (single-point ADODG)

r
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P
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2

=
<

P
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® Red circles: 9-point cluster-based (cruise only)
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List of optimization cases - single-point and multipoint cases
Compared against the AIAA ADODG cases!’ (‘CB’ denotes ‘Cluster-based’)

Case Number of points Mach C Flight segment  Data-driven multipoint
1pt-ADODGCruise 1 0.85 0.50 Cruise -
9pt-ADODGCruise 9 0.82-0.88 0.42-0.59 Cruise -
9pt-CBCruise 9 0.80 -0.84 0.45-0.56 Cruise v
9pt-CBMission 9 0.65-0.84 0.40-0.56  All segments v
17pt-CBMission 17 0.65-0.84 0.38-0.57 All segments v
22pt-CBMission 22 0.63-0.85 0.38-0.58  All segments v

9 points, cruise only 9 points 17 points 22 points

< ol ol

Angle of attack (*)
- e N w
I c n =)

o
[
o

C
li. H

60 0.65 070 0.75 0.80 0.85

0560 065 070 075 080 0.85 0860 0.65 070 075 080 0.85

Mach number Mach number Mach number

17 ADODG: Aerodynamic Design Optimization Discussion Group, https://sites.google.com/view/mcgill-computational-aerogroup/adodg
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https://sites.google.com/view/mcgill-computational-aerogroup/adodg

Optimized design comparison - fuel performance evaluations
Using 100 of the most frequent flights (short-, medium-, and long-haul)
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Higher fuel reduction achieved with data-driven, ML-driven multipoint ASO
Comparing relative fuel differences with different optimized configurations

=)

Computational cost
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Short haul Medium haul Tong haul . . .
i 3 6 14.1 155 The relative fuel burn difference is

Flight hour (h) calculated based on the total fuel burn
(comprising all representative flights)

® For short- and medium-haul flights: cluster-based cases reduce more fuel (good!)
® As the flight range gets longer: the 9-point ADODG case catches up with higher fuel reduction

® The overall best performance is the 17-point cluster-based optimization case
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What about infusing aircraft
system physics in flight
profile/trajectory optimization?

Imperial College London



Flight departure trajectory optimization for low noise and low fuel
Using data-driven flight simulation for more accurate fuel assessment

The key aim is to support the decision-making processes of Standard Instrument Departure (SID) planning, flight planners, and pilots.

Multi-objective optimization Geography/topography considerations
® Noise consideration: using Aircraft Noise and Performance ® Guidance points according to flight destinations
a
(ANP) database? by Eurocontrol ® Various regulations provided by Aeronautical Information

® Fuel consumption consideration: using our in-house, Publication (AIP)
data-enhanced dynamic flight simulation model

® Topographic information

Population distribution

?https://www.aircraftnoisemodel.org/
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Decomposition-based flight path planning for low perceived noise and fuel'®

-

decomposed to

Part 1: Surface path planning
® Shortest path planning constrained by air transportation conditions
® \We developed a population-aware A* with steering constraints (PA*S) algorithm

® The cost function and searching space of the well-established A™ algorithm is reformulated to consider non-preferred regions and the
maneuverability of the aircraft

Part 2: Altitude path planning

® Multi-objective path planning for low perceived noise (ANP database model) and low fuel consumption (flight simulation model)

18Dajung Kim and Rhea P. Liem. “Population-Aware Sequential Flight Path Optimization for Low-Noise and Low-Fuel Consumption Departure Trajectory”. In: AIAA Journal 60.11 (2022)
pp. 6116-6132. por: 10.2514/1.J061603.
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Departure trajectory optimization results (with NSGA-II)
A case study with the HKG-LHR route

Surface path

® Most QAR paths traverses the highly-populated area

® The traditional A* path traverses the highly-populated area

® The population-aware A* (PA*) path avoids highly-populated area, but the path is not smooth
® The addition of steering constraints in PA*S path ensures that the path is physically flyable

Altitude path
® Noise-minimum path has a lower final altitude than most QAR paths
® Fuel-minimum path has a higher final altitude than most QAR paths
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Reinforcement learning with physics-based environment?°
Considering population density and topography maps for realistic constraints

® Objectives: minimum fuel and noise impact on population on ground
® Policy gradient algorithm: Soft-Actor-Critic

® Simulated environment: AifTrafficSim!®, our in-house open-source, web-based air traffic simulation platform
® Actions: changes in heading d©/ dt, altitude dh/ dt, and calibrated airspeed dV/ dt

m Varying the fuel-noise ratio Varying the allowable noise level
"
700 ¥ 4 -
0 Tesritories | 2025
| 12
% 00 | N

Latitude
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22°08"
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e
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114°30E
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19a Yiu Hui, Chris H. C. Nguyen, Go Nam Lui, and Rhea P. Liem. “AirTrafficSim:An open-source web-based air traffic simulation platform”.
(2023), p. 4916. por: 10.21105/joss.04916.

n: The Journal of Open Source Software 8.86

20 Chris HC. Nguyen, James M. Shihua, and Rhea P. Liem. “Fuel- and noise-minimal departure trajectory using deep reinforcement learning with aircraft dynamics and topography constraints”.
In: Communications in Transportation Research 5 (2025), p. 100165. por: https://doi.org/10.1016/j.commtr.2025.100165.
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Applying FFD-based shape optimization for cruise trajectory optimization?!
Another “cross-polination” of aircraft design and air transportation research

Bi-level trajectory minimization in unsteady wind conditions

® Objective: minimizing travel time

sor ® Design variables: trajectory coordinates (latitude and longitude)
Optimizer ® Constraints: areas to be avoided (e.g., no-fly zone)
(implemented via a penalty function)
Travel Time

L= ccator
Residual

Rty

® Bi-level optimization procedure:

1. Time-dependent Dijkstra algorithm with unsteady wind

Exploration, low-fidelity, globally optimal
Obtaining actual ground speed ( B Y 8 y op )

from wind velocity and true airspeed 2. Wind-optimal trajectory as a shape optimization problem
: speed (Exploitation, high-fidelity, locally optimal)
Track
® Average travel time reductions: 13.1% (HKG < LHR), 1.7% (HKG < SYD),
5 S 1.2% (HKG < SIN)
Trajectory X . . . .
® Computational cost: < 4s (with GPU acceleration and CPU multiprocessing)
We windt 0T Not all constraints have been included, but it's promising!
21 James M. Shihua, Chris HC. Nguyen, and Rhea P. Liem. “Real-Time Bi-Level Aircraft Trajectory Optimisation under the Presence of Unsteady Wind". In: Optimization and Engineering

(2025). In press.
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Time-minimal, wind-optimal cruise trajectory results
Notable benefits on HKG-LHR (east-west route) due to the presence of jet streams

—— Great Circle —— Optimized *  Destination
T=3.70h

T=1.19h T=241h
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Time-minimal, wind-optimal cruise trajectory results
Marginal benefits on SYD-HKG (south-north) due to small wind variations

—— Great Circle —— Optimized *  Destination

T=6.18h T=7.05h T=7.93h
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The versatility of shape parameterization and optimization
Using free-form deformation (FFD) method

From parameterizing wing geometry ...
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The versatility of shape parameterization and optimization
Using free-form deformation (FFD) method

... to cruise trajectory shape
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To the best of our knowledge, this is the first effort to do so. There might be many more applications!

Imperial College London
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What about data-free,
non-physical models? Can they

be useful?



Statistical physics modeling - Cellular automata (CA) for arrival dynamics??
Understanding macroscopic behaviors from microscopic interactions

® Data-free model to study a system's behaviors based on the interactions of molecular Terminal Maneuvering Area (TMA)
agents in a grid system following some transition rules o

Y o
® The key aim is to provide a faithful abstraction of the underlying system properties ]

- FREnty

CA applications: ground traffic, population dynamics, crowd evacuation, epidemic spread

® \We derived a CA model suitable for studying the navigation dynamics within arrival
TMA, with considerations of wake turbulence separation minima, air traffic mix, waypoint
locations, and navigation flexibility

® Resulting fundamental diagrams (q and p represent traffic flow and TMA occupancy):

N Elfree flow zone Elfree flow zone
[lcongested flow zone [congested flow zone
Wlsaturation flow zone Clorganized flow zone
N Elsaturation flow zone
0 eesovese

221 eoluwa . Ogedengbe, Tak Shing Tai, K. Y. Michael Wong, and Rhea P. Liem. “Cellular automata for the investigation of navigation dynamics and aircraft mix in terminal arrival traffic”. In

Physica A 671 (), p. 130628. por: 10.1016/j.physa.2025.130628.
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Statistical physics modeling - Cellular automata (CA) for arrival dynamics??
Understanding macroscopic behaviors from microscopic interactions

® Data-free model to study a system's behaviors based on the interactions of molecular

agents in a grid system following some transition rules

® The key aim is to provide a faithful abstraction of the underlying system properties
CA applications: ground traffic, population dynamics, crowd evacuation, epidemic spread

We derived a CA model suitable for studying the navigation dynamics within arrival
TMA, with considerations of wake turbulence separation minima, air traffic mix, waypoint

locations, and navigation flexibility

® Resulting fundamental diagrams (q and p represent traffic flow and TMA occupancy):
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Apply the fixed strategy when the aircraft
are mostly small/medium, and flexible
strategy when the traffic mix is more
heterogeneous.

221 eoluwa . Ogedengbe, Tak Shing Tai, K. Y. Michael Wong, and Rhea P. Liem. “Cellular automata for the investigation of navigation dynamics and aircraft mix in terminal arrival traffic”. In

Physica A 671 (), p. 130628. por: 10.1016/j.physa.2025.130628.
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Summary

Designing Next-Generation Aircraft and Operations for Sustainable Aviation:

from Data and Models to Decisions
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Summary

Designing Next-Generation Aircraft and Operations for Sustainable Aviation:
from Data and Models to Decisions

Infusing actual operational data into aircraft performance analysis and design process

® Statistical information of aircraft operations are used to parameterize mission profiles and formulate constraints

® Yields more realistic design space and more relevant optimization results
Embedding physics-based aircraft models into aircraft operation optimization

® Helps ensure that the resulting trajectory is physically flyable

® More accurate fuel consumption estimation
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Summary

Designing Next-Generation Aircraft and Operations for Sustainable Aviation:
from Data and Models to Decisions

Infusing actual operational data into aircraft performance analysis and design process

® Statistical information of aircraft operations are used to parameterize mission profiles and formulate constraints

® Yields more realistic design space and more relevant optimization results
Embedding physics-based aircraft models into aircraft operation optimization

® Helps ensure that the resulting trajectory is physically flyable

® More accurate fuel consumption estimation

Hybrid modeling— learning from data through the lens of physics-based models

® Combines the objectivity of data and interpretability and generalizability of physics-based models
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What’s next: Towards developing a “superdisciplinary” framework for sustainable aviation

Designing Next-Generation Aircraft and Operations for Sustainable Aviation:

from Data and Models to Decisions

Developing a future-aware framework (because data only reflect the past, not the future)

® “What exactly to learn from data”

® [ncorporate sensitivity analysis, forecasting, and uncertainty management

Developing a socio-techno-economic-driven framework

Because we do NOT want people in the future to say: “The great accomplishments of the 21th century nevertheless created their own sets

of shortfalls or negative impacts on society”.
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What’s next: Towards developing a “superdisciplinary” framework for sustainable aviation

Designing Next-Generation Aircraft and Operations for Sustainable Aviation:

from Data and Models to Decisions

Developing a future-aware framework (because data only reflect the past, not the future)

® “What exactly to learn from data”

® [ncorporate sensitivity analysis, forecasting, and uncertainty management

Developing a socio-techno-economic-driven framework

Because we do NOT want people in the future to say: “The great accomplishments of the 21th century nevertheless created their own sets

of shortfalls or negative impacts on society”.

Develop technological solutions with considerations of social, economic, and en-

vironmental impact early in the design process, and not as an afterthought.
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IMPERIAL

Thank you.
Questions?

rliem@imperial.ac.uk
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