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The wonder and importance of the aviation industry
Why do we need air transportation services?

l The demand for air travel (∼ 5 billion passengers)
l The demand for the shipment of goods by air (∼ 61 million tonnes)

Major economic force: 87.7 million jobs
l 11.3 million direct jobs

(e.g., airlines, air navigation service providers, and airports)
l 18.1 million indirect jobs

(e.g., purchases of goods and services in the air transport industry supply chain)
l 13.5 million induced jobs

(e.g., retail, customer goods, and services supported by the spending power)
l 44.8 million tourism jobs

(e.g., aviation-enabled tourism related jobs)

Air traffic size in 2019
1,478 airlines, 3,780 airports, 48,044 routes

Source: Air Transport Action Group (ATAG) https://atag.org/facts-figures
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Potential negative impact of innovation

“The great accomplishments of the eighteenth through early twentieth centuries nevertheless created
their own set of shortfalls or negative impacts on society.”

— Dr. Subra Suresh, Dean of the MIT School of Engineering (2007–2010)

The rapid growth of air transportation has increased environmental concerns

Noise pollution
l Landing and take-off phases (LTO)
l Annoyance, sleep disturbance
l A major constraint on airport planning

Gaseous exhaust emission from jet engine
l From complete (or non-ideal) fuel combustion
l Accounts for 2.5% of the global CO2 emissions
l Contributes around 4% to global warming

Non-CO2 aviation emissions
l Contrails
l Aviation-induced clouds
l NO2 emissions
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Potential negative impact of innovation
With an example in the air transportation industry

“The great accomplishments of the eighteenth through early twentieth centuries nevertheless created
their own set of shortfalls or negative impacts on society.”

— Dr. Subra Suresh, Dean of the MIT School of Engineering (2007–2010)

The rapid growth of air transportation has increased environmental concerns

Noise pollution
l Landing and take-off phases (LTO)
l Annoyance, sleep disturbance
l A major constraint on airport planning

Gaseous exhaust emission from jet engine
l From complete (or non-ideal) fuel combustion
l Accounts for 2.5% of the global CO2 emissions
l Contributes around 4% to global warming

Non-CO2 aviation emissions
l Contrails
l Aviation-induced clouds
l NO2 emissions
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Designing aircraft and its operations has become a superdisciplinary problem
The design process needs to consider some externalities and impacts

Sustainable: “Capable of being maintained or continued at a certain rate or level” (Oxford Dict.)

Sustainable aviation: reducing and mitigating the environmental impact of aviation

l Operational changes
l Technological changes
l Policy changes
l Shift towards alternative fuel

Requires a concerted effort across government, industry,
academia; and also across different solutions.

Image sources: https://store.icao.int/en/traffic-flow-global-data-shape-file, boeing.com
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Operational and technological changes to support sustainable aviation efforts
A system level assessment is needed to truly evaluate the benefits

Examples in technological changes

Improvements in propulsion systems
l In the 1970s: high by-pass ratio engine doubled fuel efficiency
l Hydrogen-powered aircraft
l Electric/hybrid-electric aircraft

Improvements in aircraft designs
l Shape optimization for drag reduction
l Wingtip devices: winglets, sharklets, etc.
l New configurations: strut-braced wing, BWB, etc.

Alternative fuel
l Sustainable aviation fuels

Examples in operational changes

Flight operation strategies
l Optimize flight path/flight planning
l Optimize fuel loading decision
l Reduce engine use (e.g., during taxi)

Changes in air traffic management/airspace
l Flexible air traffic management
l Apply continuous descent/climb operations

Ground support improvements
l Airport infrastructure improvements
l Aircraft maintenance improvements

Imperial College London Designing Next-Generation Aircraft and Operations for Sustainable Aviation: from Data and Models to Decisions 4/42 17/06/2025



How the analyses and optimization of aircraft and operations are performed
Can siloed analyses achieve truly optimum designs?

Operation-unaware aircraft design
l Aircraft is designed at its design mission
l However, it is used for various missions in operations
l Fuel economy: the amount of fuel burned per payload per

range (in liters/kg/m)

Fuel economy vs flight range

Fuel vs noise
l Reducing 1-2 dB in a long-range aircraft traded a 1-2%

increment in fuel burna

l Aircraft’s drag and noise minimizations do not lead to the
same optimal shapeb

aM. Pacull. “Transport Aircraft Noise Technologies”. In: Proceedings of the International
Symposium: Which Technologies for Future Aircraft Noise Reduction? Association
Aéronautique et Astronautique de France. 2002.
bBeckett Y. Zhou, Tim Albring, Nicolas R. Gauger, Thomas D. Economon,
Francisco Palacios, and Juan J. Alonso. “A Discrete Adjoint Framework for Unsteady
Aerodynamic and Aeroacoustic Optimization”. In: 16th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference. Dallas, TX, 2015.
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Designing the next-generation aircraft and operations
Towards developing a “future-ready” design framework
Design as a decision-making process

l Requires an abstraction to describe the product/service/system

The models need to be as realistic as possible

Multidisciplinary design optimization (MDO)
l Accounts for the coupling in the system
l Automatically performs the optimal interdisciplinary tradeoffs

The MDO problem formulation also needs to be realistic to yield truly relevant results

How to account for uncertainties and operational variability?

Infuse data into the model derivation and MDO problem formulations.
Fourth paradigm of science – using data exploration to unify data, theory, and simulationa

aTony Hey, Stewart Tansley, and Kristin Tolle, eds. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, 2009.
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Presentation
Overview

01 Data-enhanced fuel assessment models

02 Operation-aware aerodynamic shape optimization

03 Physics-supported air transportation modeling

04 Data-free, non-physical models

05 Summary and conclusion
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Fuel assessment models to
serve different purposes (and
different stakeholders)
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Deriving fuel assessment models
We need different models for different purposes

What makes realistically modeling fuel burn complex?
l Different aircraft types have different fuel characteristics
l The “performance factor” of each aircraft should be considered (e.g.,

due to ageing)
l Aircraft fly different routes – even for the same origin-destination pair

– with different proportions of climb, cruise, and descent phases

Why do we need different models for different purposes?
Purpose, level of details, available inputs, available computational time

l To support aircraft design optimization: the model needs to emulate
detailed physics and takes aircraft design parameters as inputs

l To support air transportation policy assessment: the total aggregate
fuel burn is required and needs to include air traffic frequency and
movements

l For airlines: supporting fuel budgeting and planning, most of the
data/inputs are in-house
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Fuel assessment models developed in-house

Most works mentioned below were done at The Hong Kong University of Science and Technology (HKUST)

l To support policy analysis: aggregate fuel burn calculation1

l To support airline’s fuel budgeting: reserve fuel estimation2, fuel estimation for new sectors3

l To support detailed aircraft design process: surrogate-based flight mission analysis4 and its enhancement with data-driven mission
parameterization5. (The framework is extended to cater for electric amphibious aircraft6)

l To support flight path optimization: dynamic flight-simulation with data-driven constraints and boundary conditions7

1Jefry Yanto and Rhea P. Liem. “Aircraft fuel burn performance study: a data-enhanced modeling approach”. In: Transportation Research Part D: Transport and Environment 65 (2018),
pp. 574–595. doi: 10.1016/j.trd.2018.09.014.
2Yuan Lyu, Jefry Yanto, and Rhea P. Liem. “Aircraft Reserve Fuel Study with High-Fidelity Fuel Approximation Model”. In: AIAA Aviation. AIAA 2019-3509. Dallas, TX, 2019. doi:
10.2514/6.2019-3509.
3Jefry Yanto and Rhea P. Liem. “Cluster-Based Aircraft Fuel Estimation Model for Effective and Efficient Fuel Budgeting on New Routes”. In: Aerospace 9 (2022), p. 624. doi:
10.3390/aerospace9100624.
4Rhea P. Liem, Charles A. Mader, and Joaquim R. R. A. Martins. “Surrogate Models and Mixtures of Experts in Aerodynamic Performance Prediction for Mission Analysis”. In: Aerospace
Science and Technology 43 (2015), pp. 126–151. doi: 10.1016/j.ast.2015.02.019.
5Yuan Lyu and Rhea P. Liem. “Flight performance analysis with data-driven mission parameterization: mapping flight operational data to aircraft performance analysis”. In: Transportation
Engineering 2.100035 (2020). doi: 10.1016/j.treng.2020.100035.
6James M. Shihua, Yuan Lyu, and Rhea P. Liem. “Multidisciplinary Design and Mission Analysis of an Electric Amphibious Flying Vehicle”. In: AIAA AVIATION Forum. 2023. doi:
10.2514/6.2023-3907.
7Dajung Kim, Arjit Seth, and Rhea P. Liem. “Data-enhanced dynamic flight simulations for flight performance analysis”. In: Aerospace Science and Technology 121.107357 (2022). doi:
10.1016/j.ast.2022.107357.
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Fuel assessment with detailed surrogate-based flight mission analysis8

Considering geometry, aerodynamics, mission, engine, atmospheric conditions

Takeoff

Climb
Descent

Landing

Cruise

Detailed mission analysis procedure

Atmospheric
model

Engine model Weight-and-balance
model

Atmospheric
conditions

Aircraft components
and weights

Engine
parameters

Mission
parameters

Aircraft
geometry

Fuel burn,
emissions

• Aircraft operating
cost

• Environmental
impacts

• Policy analysis

l Analyze all mission phases, from takeoff to landing, by solving the range equation using numerical integration
l Computational challenge: it requires millions of aerodynamic performance evaluations
l Solutions: use surrogate models to approximate the aerodynamic force and moment coefficients

8Rhea P. Liem, Charles A. Mader, and Joaquim R. R. A. Martins. “Surrogate Models and Mixtures of Experts in Aerodynamic Performance Prediction for Mission Analysis”. In: Aerospace
Science and Technology 43 (2015), pp. 126–151. doi: 10.1016/j.ast.2015.02.019.
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Data-enhanced flight mission analysis procedure9

Mapping airline flight data into flight simulation
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Complementarity between data- and physics-based models
l Data-based models: not interpretable, not transparent enough
l Physics-based models: cannot model the operational variations

Hybrid approach: combining the strengths of both models
l Use a physics-based model that can take flight operational data

as inputs, simulate the flights, and provide useful information
such as fuel burn

l Use actual flight trajectory dataa to parameterize the mission
profiles in the derived flight performance analysis module, to
better represent the flight trajectory variation in each
origin-destination (OD) pair

aThe data are obtained under the Data Partnership Agreement between Cathay Pacific Airways
Ltd and the Department of Mechanical and Aerospace Engineering, HKUST

9Yuan Lyu and Rhea P. Liem. “Flight performance analysis with data-driven mission parameterization: mapping flight operational data to aircraft performance analysis”. In: Transportation
Engineering 2.100035 (2020). doi: 10.1016/j.treng.2020.100035.
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Mission parameterization
An example with Hong Kong to New York (HKG-JFK) flights

Cruise step-climb profiles and altitudes
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Model enhancement substantially improves fuel approximation accuracy10

The model is validated by comparing calculated fuel against airline data

List of scenarios
Scenario 1 Nominal case, assuming that no flight information is available
Scenario 2 Assume that landing weight, flight time, and ground speed

information are available to characterize different flights
Scenario 3 Add wind correction to the previous scenario to account for

wind effect on actual speed and flying distance
Scenario 4 Perform the flight performance analyses with the full

data-driven mission parameterization

Observations
l Adding more features → improves the fuel burn estimation accuracy
l Infusing data into a physics-based model yields more realistic results
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10Yuan Lyu and Rhea P. Liem. “Flight performance analysis with data-driven mission parameterization: mapping flight operational data to aircraft performance analysis”. In: Transportation
Engineering 2.100035 (2020). doi: 10.1016/j.treng.2020.100035.

Imperial College London Designing Next-Generation Aircraft and Operations for Sustainable Aviation: from Data and Models to Decisions 14/42 17/06/2025

https://doi.org/10.1016/j.treng.2020.100035


How can this model help improve aircraft design process?
Enables incorporating flight operational aspect into the problem formulation

1 Generate realistic flight condition distributions from flight data
l Simulate flight operations based on mission profile and aircraft parameters
l Obtain flight condition information at different points along the mission profile

l Analyzing multiple flight missions w realistic flight condition distributions
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2 Accurately evaluate flight fuel consumption
l To be used in objective function formulation and/or post-optimality analyses

(The distributions below are obtained from the
data-enhanced mission analysis)
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Data-driven dynamic flight simulation model11

With detailed segment-by-segment analysis
Equations of motion
(with a point-mass rigid body assumption)

F⃗T + F⃗A + mg⃗ = m
(⃗

a + ω⃗ × V⃗
)

Changes in velocity ∆V⃗ and position ∆⃗r are calculated via numerical integration

Data-driven constraints
Use QAR data to extract segments’ boundary conditions and flight simulation
constraints (speed and altitude profiles).

Validation
Compare the flight time and fuel consumption to those in QAR data (< 5% error)

This model has been used in flight path planning

10 Dajung Kim, Arjit Seth, and Rhea P. Liem. “Data-enhanced dynamic flight simulations for flight performance
analysis”. In: Aerospace Science and Technology 121.107357 (2022). doi: 10.1016/j.ast.2022.107357.

Data Model

Physics Model

Quick Access Recorder Data

Segmentation Model

Flight Route Flight Routes

Machine Learning
Extreme Gradient Boosted
Decision Trees Classification

· · ·

Data processing

Vertical Speed Airspeed Flight Range

Altitude Mach Number Acceleration

Segment-based Flight Simulation

Flight Segments

Flight Dynamics

Outputs

Path Fuel Noise Flight States

Constraints
Residual Equations
R1(f1, f

∗
1 , f2, f

∗
2 ;α, η, τ) = 0

R3(f4, f
∗
4 ; tcruisef ) = 0

Segment Terminal Condition
R2(f3, f

∗
3 )

Takeoff Landing
f1 = Acceleration f1 = Acceleration
f2 = Vertical Speed f2 = Vertical Speed
f3 = Speed f3 = Altitude

Constant CAS Constant Mach
f1 = CAS f1 = Mach Number
f2 = Vertical Speed f2 = Vertical Speed
f3 = Mach or Altitude f3 = Altitude or Time

Accelerated Flight Range
f1 = Acceleration f4 = Flight Range
f2 = Vertical Speed
f3 = Altitude
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Data-driven dynamic flight simulation model11

With detailed segment-by-segment analysis
Equations of motion
(with a point-mass rigid body assumption)

F⃗T + F⃗A + mg⃗ = m
(⃗

a + ω⃗ × V⃗
)

Changes in velocity ∆V⃗ and position ∆⃗r are calculated via numerical integration

Data-driven constraints
Use QAR data to extract segments’ boundary conditions and flight simulation
constraints (speed and altitude profiles).

Validation
Compare the flight time and fuel consumption to those in QAR data (< 5% error)

This model has been used in flight path planning

10 Dajung Kim, Arjit Seth, and Rhea P. Liem. “Data-enhanced dynamic flight simulations for flight performance
analysis”. In: Aerospace Science and Technology 121.107357 (2022). doi: 10.1016/j.ast.2022.107357.

Result example: HKG-LHR flights
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Operation-aware aerodynamic
shape optimization for
fuel-efficient aircraft design
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Aircraft design as a numerical optimization problem
Conceptual design stage
Preliminary sizing, as a function of the top level aircraft requirements (TLARs).

Detailed design stage

Aerodynamic shape optimization (ASO) ✓

Minimize Drag (as a proxy of fuel)
With respect to Wing geometry parameters
Subject to Lift constraint

Moment constraint
Geometry constraints

Aerostructural optimization
This optimization includes structural design variables and constraints.

ASO and aerostructural optimizations are traditionally per-
formed at the nominal condition.

Displacements Forces

Aerodynamic solver (Euler)

Structures solver (Finite Element)
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Expanding ASO capability to consider actual aircraft operations
From single-point to multipoint to mission-based/operation-aware

Single-point • 	 Multipoint •
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l Multipoint optimization: avoids off-design
performance degradationa

fobj =
N∑

i=1

wjfi

N∑
i=1

wi = 1

l Key challenges: find the right points and weights

aMark Drela. “Pros and Cons of Airfoil Optimization”. In: Frontiers of CFD
1998. Ed. by D. A. Caughey and M. M. Hafez. World Scientific, 1998,
pp. 363–381.

Towards an operation-aware multipoint ASO formulation
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Mission data Flight-condition data

Surrogate-based
mission analysis

l Obtain flight condition distribution from actual flight data
l Early work: relied only on payload and range data, and focused on cruiseab

l Latest work: more data, better mission analysis, aided with ML

aRhea P. Liem, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. “Multimission Aircraft Fuel Burn
Minimization via Multipoint Aerostructural Optimization”. In: AIAA Journal 53.1 (2015), pp. 104–122. doi:
10.2514/1.J052940.
bRhea P. Liem, G. K. W. Kenway, and Joaquim R. R. A. Martins. “Expected Drag Minimization for
Aerodynamic Design Optimization Based on Aircraft Operational Data”. In: Aerospace Science and
Technology 63 (2017), pp. 344–362.
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Multipoint ASO – Formulating the expectation integral approximation12

Approximating the expected value of CD in the [Mach, CL] space:

E [CD] =
x
Ω

CD (M, CL) p (M, CL) dM dCL

≈
n∑

i=1

m∑
k=1

τikCD
(
Mi, CLk

)
p
(
Mi, CLk

)

Using the generated flight-condition distribution to derive p
(
Mi, CLk

)

Key results

l More accurate expectation integral
approximation – is it important?

l Not much difference with other
multipoint optimization results in terms
of range performance (

√
ML/D)

Is it, then, worth doing?
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12Rhea P. Liem, G. K. W. Kenway, and Joaquim R. R. A. Martins. “Expected Drag Minimization for Aerodynamic Design Optimization Based on Aircraft Operational Data”. In: Aerospace
Science and Technology 63 (2017), pp. 344–362.
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Multipoint aerostructural optimization to minimize weighted average fuel burn
Converting a multimission problem into a multipoint one13

Objective function
Multimission fuel burn

Wfuel =
∑

fkWk
fuel
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Conversion into a multipoint problem through linearization

Wfuel︸ ︷︷ ︸
weighted average fuel-burn

from multiple missions

≈
N∑

p=1

∂Wfuel

∂Dp
Dp

︸ ︷︷ ︸
drag forces at multiple
flight operating points

+
∂Wfuel

∂Ws
Ws

fobj =
N∑

p=1

µpDp + λWs

l Perform the mission analysis offline to calculate fuel burn
l Perform first order Taylor series expansion to compute µp and λ

l Kriging samples (for the mission analysis) become the flight condition to evaluate Dp

13Rhea P. Liem, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. “Multimission Aircraft Fuel Burn Minimization via Multipoint Aerostructural Optimization”. In: AIAA Journal 53.1
(2015), pp. 104–122. doi: 10.2514/1.J052940.
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Benefits of performing operation-awaremultipoint aerostructural optimization
(Only payload and range information, and only cruise in mission analysis)
1. More consistent performance improvement across different flight conditions
2. Improved overall fuel efficiency across different flight missions
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Benefits of performing operation-awaremultipoint aerostructural optimization
(Only payload and range information, and only cruise in mission analysis)
1. More consistent performance improvement across different flight conditions
2. Improved overall fuel efficiency across different flight missions

Single-point optimization
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Multipoint optimization
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The multipoint optimization reduces fuel burn by 6.6%, whereas the single-point one only reduces it by 1.7%.
“The airline industry spends $200 billion on fuel per year, so a 2% savings is $4 billion.” – Bill Ruh, VP for software at GE Research
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Data-driven, operation-aware ASOwith machine learning andmore data15

Using flight conditions generated by data-enhanced mission analysis

Much richer flight condition distribution, thanks to higher-fidelity model and more detailed data

Flight condition distribution obtained from the QAR data of 500 flights14.
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Flight condition information: [M, h, α, CL] (from a total of N timestamps).

Wing geometry
NASA CRM configuration (L3 mesh).

Aerodynamic solver
ADFlow (from the MDO Lab’s – at the
University of Michigan – MACH-Aero
framework) (RANS + Spalart-Allmaras
turbulence model).

Key performance evaluation metric
Fuel consumption of 100 representative flight
missions.

14The flight data are obtained under the Data Partnership Agreement between Cathay Pacific Airways Ltd. and the Dept. of Mechanical and Aerospace Engineering, HKUST (2020–2026).
15Aobo Yang, Yuan Lyu, Jichao Li, and Rhea P. Liem. “Operation-Aware Aircraft Wing Design Using Cluster-Based Multipoint Aerodynamic Shape Optimization”. In: Journal of Aircraft (2025).
(Article in advance). doi: 10.2514/1.C038291.
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Multipoint ASO formulation – with a data-driven composite objective function

Function/variable Description Bounds Quantity
Minimize fobj =

∑K
k=1 wkCDk Weighted-average drag coefficient - -

With respect to αk Angle of attack [1.0, 3.5] K
λ Coefficients of wing shape modes [λlower,λupper] 50
αtwist Wing twists [−1.0, 1.0] 7

Total design variables 57 + K
Subject to CLk − C∗

Lk
≥ 0 Lift constraints - K

CM ≥ −0.17 Moment constraint at nominal condition - 1
V ≥ Vinitial Volume constraint - 1
t ≥ 0.98 × tinitial Thickness constraints - 750

Total constraints 752 + K

Important building blocks
l Data-enhanced flight mission analysis procedure: to obtain CL at each flight condition and evaluate fuel consumption [Lyu and Liem, 2020]

l Compact modal parameterization for the wing geometry: to ensure that the optimization is computationally efficient16

l [NEW] Cluster-based multipoint formulation: to derive the data-driven objective function
16Jichao Li and Mengqi Zhang. “On deep-learning-based geometric filtering in aerodynamic shape optimization”. In: Aerospace Science and Technology 112 (May 2021), p. 106603. doi:
10.1016/j.ast.2021.106603.
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Data-driven, cluster-basedmultipoint objective function fobj =
∑K

k=1 wkCDk
Use QAR-based flight condition distribution to determine the points and weights
Data preprocessing (x = [M, h, α,CL] 7→ p)

l Normalization → [−1, 1]

l Orthogonalization with Principal Component Analysis (PCA)

Deriving objective function’s points and weights
l Probability function of Gaussian mixture model (GMM)

pGMM(p) =

K∑
k=1

πkN (p | µk, covk)

l πk is the mixing coefficient, µk is the cluster centroid (in terms of p)
l Multipoint objective function:

fobj =
K∑

k=1

wkCDk =
K∑

k=1

πkCD (µk 7→ x),

0.60 0.65 0.70 0.75 0.80 0.85
Mach number

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

C L

10 2

10 1

100

101

102

Lo
gN

or
m

 o
f f

lig
ht

 c
on

di
tio

n 
co

un
ts

(The symbols are sized based on their weights.)

l Diamonds: ADODG 9-point case
l Blue diamond: nominal case (single-point ADODG)
l Red circles: 9-point cluster-based (cruise only)
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List of optimization cases – single-point andmultipoint cases
Compared against the AIAA ADODG cases17 (‘CB’ denotes ‘Cluster-based’)

Case Number of points Mach CL Flight segment Data-driven multipoint

1pt-ADODGCruise 1 0.85 0.50 Cruise -
9pt-ADODGCruise 9 0.82 – 0.88 0.42 – 0.59 Cruise -
9pt-CBCruise 9 0.80 – 0.84 0.45 – 0.56 Cruise ✓
9pt-CBMission 9 0.65 – 0.84 0.40 – 0.56 All segments ✓
17pt-CBMission 17 0.65 – 0.84 0.38 – 0.57 All segments ✓
22pt-CBMission 22 0.63 – 0.85 0.38 – 0.58 All segments ✓

9 points, cruise only
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17ADODG: Aerodynamic Design Optimization Discussion Group, https://sites.google.com/view/mcgill-computational-aerogroup/adodg
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Optimized design comparison – fuel performance evaluations
Using 100 of the most frequent flights (short-, medium-, and long-haul)
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Higher fuel reduction achieved with data-driven, ML-drivenmultipoint ASO
Comparing relative fuel differences with different optimized configurations
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The relative fuel burn difference is
calculated based on the total fuel burn
(comprising all representative flights)

l For short- and medium-haul flights: cluster-based cases reduce more fuel (good!)
l As the flight range gets longer: the 9-point ADODG case catches up with higher fuel reduction
l The overall best performance is the 17-point cluster-based optimization case
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What about infusing aircraft
system physics in flight
profile/trajectory optimization?
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Flight departure trajectory optimization for low noise and low fuel
Using data-driven flight simulation for more accurate fuel assessment

The key aim is to support the decision-making processes of Standard Instrument Departure (SID) planning, flight planners, and pilots.

Multi-objective optimization
l Noise consideration: using Aircraft Noise and Performance

(ANP) databasea by Eurocontrol
l Fuel consumption consideration: using our in-house,

data-enhanced dynamic flight simulation model

ahttps://www.aircraftnoisemodel.org/

Geography/topography considerations
l Guidance points according to flight destinations
l Various regulations provided by Aeronautical Information

Publication (AIP)
l Population distribution
l Topographic information
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Decomposition-based flight path planning for low perceived noise and fuel18

decomposed to

Part 1: Surface path planning
l Shortest path planning constrained by air transportation conditions
l We developed a population-aware A∗ with steering constraints (PA∗S) algorithm
l The cost function and searching space of the well-established A∗ algorithm is reformulated to consider non-preferred regions and the

maneuverability of the aircraft

Part 2: Altitude path planning
l Multi-objective path planning for low perceived noise (ANP database model) and low fuel consumption (flight simulation model)

18Dajung Kim and Rhea P. Liem. “Population-Aware Sequential Flight Path Optimization for Low-Noise and Low-Fuel Consumption Departure Trajectory”. In: AIAA Journal 60.11 (2022),
pp. 6116–6132. doi: 10.2514/1.J061603.
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Departure trajectory optimization results (with NSGA-II)
A case study with the HKG-LHR route
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Surface path
l Most QAR paths traverses the highly-populated area
l The traditional A∗ path traverses the highly-populated area
l The population-aware A∗ (PA∗) path avoids highly-populated area, but the path is not smooth
l The addition of steering constraints in PA∗S path ensures that the path is physically flyable

Altitude path
l Noise-minimum path has a lower final altitude than most QAR paths
l Fuel-minimum path has a higher final altitude than most QAR paths
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Reinforcement learning with physics-based environment20

Considering population density and topography maps for realistic constraints
l Objectives: minimum fuel and noise impact on population on ground
l Policy gradient algorithm: Soft-Actor-Critic
l Simulated environment: AirTrafficSim19, our in-house open-source, web-based air traffic simulation platform
l Actions: changes in heading dΘ/ dt, altitude dh/ dt, and calibrated airspeed dV/ dt
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19Ka Yiu Hui, Chris H. C. Nguyen, Go Nam Lui, and Rhea P. Liem. “AirTrafficSim:An open-source web-based air traffic simulation platform”. In: The Journal of Open Source Software 8.86
(2023), p. 4916. doi: 10.21105/joss.04916.
20Chris HC. Nguyen, James M. Shihua, and Rhea P. Liem. “Fuel- and noise-minimal departure trajectory using deep reinforcement learning with aircraft dynamics and topography constraints”.
In: Communications in Transportation Research 5 (2025), p. 100165. doi: https://doi.org/10.1016/j.commtr.2025.100165.
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Applying FFD-based shape optimization for cruise trajectory optimization21

Another “cross-polination” of aircraft design and air transportation research
xi , xf , yi , yf

Grid

Searcher
x0, y0,p0

x∗, y∗, t∗f
Shape

Optimizer
x, y,p

t∗f
Travel Time

Calculator
x, y,p

R(tf )
Residual

Solver

Bi-level trajectory minimization in unsteady wind conditions
l Objective: minimizing travel time
l Design variables: trajectory coordinates (latitude and longitude)
l Constraints: areas to be avoided (e.g., no-fly zone)

(implemented via a penalty function)

l Bi-level optimization procedure:
1. Time-dependent Dijkstra algorithm with unsteady wind

(Exploration, low-fidelity, globally optimal)
2. Wind-optimal trajectory as a shape optimization problem

(Exploitation, high-fidelity, locally optimal)

l Average travel time reductions: 13.1% (HKG ⇔ LHR), 1.7% (HKG ⇔ SYD),
1.2% (HKG ⇔ SIN)

l Computational cost: < 4s (with GPU acceleration and CPU multiprocessing)

Not all constraints have been included, but it’s promising!

21James M. Shihua, Chris HC. Nguyen, and Rhea P. Liem. “Real-Time Bi-Level Aircraft Trajectory Optimisation under the Presence of Unsteady Wind”. In: Optimization and Engineering
(2025). In press.
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Time-minimal, wind-optimal cruise trajectory results
Notable benefits on HKG-LHR (east-west route) due to the presence of jet streams
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Time-minimal, wind-optimal cruise trajectory results
Marginal benefits on SYD-HKG (south-north) due to small wind variations
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The versatility of shape parameterization and optimization
Using free-form deformation (FFD) method

From parameterizing wing geometry ...
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The versatility of shape parameterization and optimization
Using free-form deformation (FFD) method

... to cruise trajectory shape
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To the best of our knowledge, this is the first effort to do so. There might be many more applications!
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What about data-free,
non-physical models? Can they
be useful?
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Statistical physics modeling – Cellular automata (CA) for arrival dynamics22

Understanding macroscopic behaviors frommicroscopic interactions
l Data-free model to study a system’s behaviors based on the interactions of molecular

agents in a grid system following some transition rules
l The key aim is to provide a faithful abstraction of the underlying system properties
l CA applications: ground traffic, population dynamics, crowd evacuation, epidemic spread
l We derived a CA model suitable for studying the navigation dynamics within arrival

TMA, with considerations of wake turbulence separation minima, air traffic mix, waypoint
locations, and navigation flexibility

l Resulting fundamental diagrams (q and µ represent traffic flow and TMA occupancy):

Terminal Maneuvering Area (TMA)

22Ikeoluwa I. Ogedengbe, Tak Shing Tai, K. Y. Michael Wong, and Rhea P. Liem. “Cellular automata for the investigation of navigation dynamics and aircraft mix in terminal arrival traffic”. In:
Physica A 671 (), p. 130628. doi: 10.1016/j.physa.2025.130628.
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Statistical physics modeling – Cellular automata (CA) for arrival dynamics22

Understanding macroscopic behaviors frommicroscopic interactions
l Data-free model to study a system’s behaviors based on the interactions of molecular

agents in a grid system following some transition rules
l The key aim is to provide a faithful abstraction of the underlying system properties
l CA applications: ground traffic, population dynamics, crowd evacuation, epidemic spread
l We derived a CA model suitable for studying the navigation dynamics within arrival

TMA, with considerations of wake turbulence separation minima, air traffic mix, waypoint
locations, and navigation flexibility

l Resulting fundamental diagrams (q and µ represent traffic flow and TMA occupancy):

CA representation of the arrival TMA

Apply the fixed strategy when the aircraft
are mostly small/medium, and flexible
strategy when the traffic mix is more
heterogeneous.

22Ikeoluwa I. Ogedengbe, Tak Shing Tai, K. Y. Michael Wong, and Rhea P. Liem. “Cellular automata for the investigation of navigation dynamics and aircraft mix in terminal arrival traffic”. In:
Physica A 671 (), p. 130628. doi: 10.1016/j.physa.2025.130628.
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Summary

Designing Next-Generation Aircraft and Operations for Sustainable Aviation:
from Data and Models to Decisions

Infusing actual operational data into aircraft performance analysis and design process
l Statistical information of aircraft operations are used to parameterize mission profiles and formulate constraints
l Yields more realistic design space and more relevant optimization results

Embedding physics-based aircraft models into aircraft operation optimization
l Helps ensure that the resulting trajectory is physically flyable
l More accurate fuel consumption estimation

Hybrid modeling— learning from data through the lens of physics-based models
l Combines the objectivity of data and interpretability and generalizability of physics-based models
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What’s next: Towards developing a “superdisciplinary” framework for sustainable aviation

Designing Next-Generation Aircraft and Operations for Sustainable Aviation:
from Data and Models to Decisions

Developing a future-aware framework (because data only reflect the past, not the future)
l “What exactly to learn from data”
l Incorporate sensitivity analysis, forecasting, and uncertainty management

Developing a socio-techno-economic-driven framework

Because we do NOT want people in the future to say: “The great accomplishments of the 21th century nevertheless created their own sets
of shortfalls or negative impacts on society”.

Develop technological solutions with considerations of social, economic, and en-
vironmental impact early in the design process, and not as an afterthought.

Imperial College London Designing Next-Generation Aircraft and Operations for Sustainable Aviation: from Data and Models to Decisions 40/42 17/06/2025



What’s next: Towards developing a “superdisciplinary” framework for sustainable aviation

Designing Next-Generation Aircraft and Operations for Sustainable Aviation:
from Data and Models to Decisions

Developing a future-aware framework (because data only reflect the past, not the future)
l “What exactly to learn from data”
l Incorporate sensitivity analysis, forecasting, and uncertainty management

Developing a socio-techno-economic-driven framework

Because we do NOT want people in the future to say: “The great accomplishments of the 21th century nevertheless created their own sets
of shortfalls or negative impacts on society”.
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Thank you.
Questions?
r.liem@imperial.ac.uk
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