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A B S T R A C T   

Following the fast growth of the hydrogen economy, properly modeling the Hydrogen Supply Chain (HSC) becomes pivotal for a successful take-off. While recent 
review papers focus on the hydrogen engineering literature, this paper is the first to our knowledge to include economics approaches into a complete assessment of 
the models and mathematical formulations used to answer a variety of hydrogen-related research questions. Based on a thorough analysis of modeling choices and 
tools found in the HSC literature, we provide a refined classification of research papers through clustering and discriminant analysis. Using original measurement 
methods, we quantify the difficulty of associating existing modeling choices within a single methodology and identify opportunities and methodological blind spots 
for the hybridization of HSC-related research approaches.   

1. Introduction 

1.1. Motivation 

Energy policy has become pivotal to guide the transition towards 
low-carbon societies and comply with decarbonization objectives such 
as defined in the 2020 European Green Deal. With more than 27% of 
total 2019 GHG emissions in EU-28 (European Environmental Agency, 
2021), the transportation sector is responsible for more than a quarter of 
European emissions. With 72% of all domestic and international trans-
port GHG, road transport is the biggest contributor to transport emis-
sions (International Energy Agency, 2021). In this context, green 
hydrogen is considered as a key enabler of the energy transition for most 
recent national energy roadmaps to reach carbon neutrality by 2050. 
Yet, for hydrogen to play a significant role in the future energy mix, 
improved infrastructure design and operations, along with lower pro-
duction costs, are required. For green hydrogen to take off, coordinated 
decisions and support are thus needed along the hydrogen supply chain 
(HSC), which integrates all processes from hydrogen production and 
storage to transportation. 

Proper modeling, including various echelons and actors involved 
along the HSC, is thus essential to derive optimal policies. Mathematical 
models have been progressively introduced to inform policy decisions by 
providing valuable system-level insights to policy makers (see (KOP-
PELAAR Rembrandt et al., 2016)). However, due to the increasing 
complexity of energy systems, hydrogen contribution to different na-
tional or global modeling scenarios is extremely inconsistent (QUAR-
TON J. Christopher et al., 2020). Capturing the interactions of various 
echelons of the HSC, along multiple spatial and temporal scales, within a 
unified methodological framework is a challenging exercise. Moreover, 
several promising uses of H2, such as energy storage and 
sector-coupling, require a good representation of temporal variability, 
which has been traditionally poorly modeled. Capturing these details, 
within transparent, reproducible, and credible energy scenarios (see 
(Karl-Kiên et al., 2016)), is methodologically and computationally 
complex. 

Each discipline has thus tried to develop types of modeling ap-
proaches to solve the energy demand satisfaction problem. On the one 
hand, most papers model the HSC following a “Bottom-up” (BU) meth-
odological approach, traditionally used in engineering sciences. These 
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models explicitly model end-use technologies and different echelons of 
the supply chain. More precisely, they integrate the technical limits of 
the various technologies considered, in addition to the physicochemical 
constraints associated with the modeled processes. By focusing on the 
supply-side, this family of models investigates how energy demand, 
considered as an exogenous factor, should be optimally satisfied, 
generally through cost minimization. 

On the other hand, “Top-down” (TD) models are traditionally asso-
ciated with the economic approach of HSC modeling. They describe the 
(strategic) interactions between market actors, who seek to optimize 
their individual objective (expressed in terms of utility or profits). They 
may be partial-equilibrium or general equilibrium models, with a multi- 
sectoral formulation. This family of models may include principal-agent 
models in which a principal optimizes her objective (or a social planner 
maximizing social welfare) subject to the constraints representing each 
individual agents’ maximization of his objective function. These models 
determine the optimal use of energy and other inputs to optimize social 
welfare and the economic efficiency of firms, while satisfying consumer 
preferences. The demand for energy is usually assumed to be endoge-
nous, while the H2 available production technologies, installed capac-
ities, in addition to economic costs, consumption of natural resources 
and GHG emissions, are considered exogenous. For instance, coupling a 
dynamic Material Flow Analysis (MFA) with a system dynamics 
approach, (XUN et al., 2022) investigate the regional evolution mech-
anism of a fuel cell vehicle (FCV) supply chain, complexified by the 
impacts from domestic industrial competitiveness against foreign in-
dustries and commodities trading possibilities. 

Following (HOURCADE Jean-Charles et al., 2006), BU models are 
often criticized for lacking realistic description of microeconomic 
decision-making by economic agents, or inexistent macro-economic 
feedback of the energy pathways on the general economic structure. 
In addition, TD models lack technological flexibility, and represent 
technological change as an aggregate phenomenon with difficulties in 
assessing the combined effects of technology-specific and price-based 
policies. The gap between the two methodological approaches has 
become especially strong with the recent focus of policy debate on 
transition towards low-carbon societies. Comprehensive HSC models 
should thus be technologically explicit, behaviorally realistic, and 
include macroeconomic feedback loops between the energy sector and 
other sectors. We thus define hybrid models as mergers between BU and 
TD approaches, which seek to compensate for the above limitations by 
articulating methodological elements from both model types within a 
single integrated formalization. 

However, most review papers attempting to classify the HSC litera-
ture focus on articles formulated according to the BU methodology. 
(LeiMANIER HervéMANIER Marie-Ange, 2019) provide an 
optimization-oriented review, and classify HSC models based on their 
decision variables, performance measures, uncertainties, or solution 
methodologies. Likewise, and to identify research gaps, (Han and Jing, 
2020) analyze and classify HSC system planning models based on 
problem types, modeling techniques and solution methods. However, 
none of those review papers include HSC models formulated using a TD 
approach. The weaknesses of BU models identified above, which are 
pervasive to the quasi-totality of BU HSC models, are completely over-
looked by those review papers. More importantly, they completely wipe 
a significant share of HSC models using a TD formulation, in addition to 
hybrid models trying to reconcile BU and TD approaches in the case of 
HSC modeling. 

1.2. Research gaps 

The objective of this paper is to identify, classify, and analyze the 
importance of key factors for properly modeling the Hydrogen Supply 
Chain. We contribute to this literature in identifying opportunities and 
methodologies allowing to integrate existing economics and engineering 
models into hybrid models of the HSC. A systematic literature review 

and content analysis of relevant Bottom-Up engineering and Top-Down 
economics models are performed in several steps detailed in the next 
section. Contrary to most of previous studies, we therefore include Top- 
Down literature into our complete assessment of the models and math-
ematical formulations used to answer a variety of hydrogen-related 
research questions. In this paper, we present a comprehensive and 
structured classification, both qualitative and quantitative, of the 
existing methodological approaches for modeling HSC and hydrogen 
markets. It is worth noticing that we not only include the BU-HSC 
literature but also the TD-HSC literature. The analysis results in identi-
fying five main methodological families classified depending on the 
research questions they address, their preferred methods, their analyt-
ical strengths and weaknesses, allowing us to better understand how 
they could complement each other. We also highlight the methodolog-
ical gaps specific to each class and the degree of difficulty of combining 
several methodologies within a single model. 

More precisely, we first seek to categorize existing modeling trends 
pertaining to HSC design, hydrogen markets and the broader macro-
economic interactions of hydrogen technologies with other sectors. 
Indeed, existing HSC literature reviews only include research papers 
formulated according to the Bottom-up methodology, with a focus on 
the modeling of supply-side end use technologies and technical con-
straints, while papers adopting a Top-down economic modeling of the 
HSC are systematically excluded. To our knowledge, our paper is the 
first to review HSC articles by including both types of approaches (BU 
and TD). We investigate the relevance of applying the traditional 
BU-TD opposition to the HSC literature. In particular, we explore how 
the differences between these two approaches are translated in terms of 
research questions, methodological choices, and modeling tools. This 
implies identifying a set of features and methodological building blocks 
that characterize the two approaches in the field of HSC modeling. 

Second, using hierarchical clustering tools, we propose a compre-
hensive methodological classification of the HSC, going beyond this 
binary opposition. Combining this approach with the identification of a 
set of features that characterize the strongest discrimination between 
model categories, we define a set of five HSC methodological families. 
This allows us to spot the specific research questions, preferred methods 
and analytical strengths and blind spots associated with each family and 
pinpoint how these different approaches could complement each other. 
As some authors appear more than once in our sample, they are more 
likely to adopt similar methods across their papers. Thus, the modeling 
choices made by those authors may be overrepresented and may cause 
potential selection biases regarding the repartition and classification of 
modeling approaches in the HSC community. We provide robustness 
checks in Section 3 by measuring the Jaccard distance between papers 
from identical authors, and randomly drop a subset of those papers if 
their distance is below a fixed threshold. We then compare the clustering 
obtained from this reduced sample and our original sample. This allows 
us to conclude that our results are robust to these potential selection 
biases. 

Finally, we investigate the functional and formal interactions of 
the methodological features identified above. Some methodological 
choices are unlikely to be made together, as they may be associated with 
different research questions, or theoretically and formally incompatible. 
We propose original quantitative tools to evaluate the interactions, in 
terms of joint occurrence, between observed methodological choices (or 
features) within investigated models, in addition to the dependency 
structure between these choices. We also explore the potential meth-
odological and theoretical grounds that may impede the development of 
more comprehensive models and hinder the potentially beneficial 
integration of seemingly contrasting research approaches. Our classifi-
cation strategy allows us to chart the connections between methodo-
logical choices, identify methodological gaps specific to each paper 
class, and proxy the degree of difficulty of associating various modeling 
choices within a single mathematical model. Indeed, as no single 
methodological approach may include all relevant variables and 
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parameters for a comprehensive modeling of HSCs, integrating existing 
models into hybrid models is required but raises some methodological 
challenges that this paper explores. 

This paper is the first to our knowledge to simultaneously propose a 
comprehensive classification of the BU and TD methods, applied to the 
study of the HSC and hydrogen market design. By constructing meth-
odological categories using statistical and clustering methods, it pro-
vides a quantitative and qualitative characterization of existing 
modeling trends. Using original tools to quantify the complexity of 
articulating various modeling elements into a single framework, our 
approach also allows us to provide some directions for developing 
promising hybrid models applied to hydrogen at the intersection of BU 
and TD methods. 

Moreover, it is worth noticing that many practitioners are interested 
in the economic and technological impact of the application of different 
policy instruments within the HSC. According to a Boston Consulting 
Group report from 2021,1 “Many technological, economic, and policy 
challenges remain before hydrogen can offer a truly cost-effective way to 
lower greenhouse gas (GHG) emissions. To realize its complete poten-
tial, hydrogen must become more cost-effective and efficient in its 
production, distribution, and utilization.” The EU strategy on hydrogen 
(COM/2020/301), adopted in 2020, also suggests policy action points in 
5 areas: investment support, support production and demand, creating a 
hydrogen market and infrastructure, research and cooperation and in-
ternational cooperation. These key economic challenges need to tackle 
the “chicken-and-egg" problem of H2 supply and demand actual reali-
zation, and policy makers as well as industry leaders and manufacturers 
may strongly benefit from modeling demand more structurally, as a 
function of H2 price (or Levelized Cost of Hydrogen, LCOH) and infra-
structure development. As underlined by the consultancy company 
McKinsey in its “Hydrogen Insight 2022” report: “Both investment and 
project development have ramped up. However, a funding gap re-
mains.2” A better understanding of economic mechanisms is needed for 
industry leaders and financial institutions to make thorough and better- 
informed decisions. 

Our original categorization approach could also guide further 
research, enabling to develop comprehensive and promising hybrid 
models applied to hydrogen at the intersection of BU and TD methods. 
This could also help practitioners to understand what the most critical 
economical and technical determinants are (and how to manage them) 
to design an efficient hydrogen supply chain. 

Our paper is organized as follows. We describe our data and meth-
odology in Section 2. Section 3 presents our clustering analysis and the 
results. Section 4 discusses the opportunities and challenges for devel-
oping hybrid methodological approaches in HSC modeling. Finally, 
Section 5 concludes, both from a theoretical and managerial perspective. 
Limitations and suggestions for future research are also highlighted. 

2. Data & methodology 

2.1. Selection of papers and classification features 

A systematic literature review (SLR) was conducted to build a 
representative sample of papers, to ensure replicability and validity of 
the results obtained in this paper. Our review was conducted according 
to the PRISMA protocol introduced in (LIBERATI Alessandro et al., 
2009), which provides an item-checklist to improve the transparency of 
systematic reviews and has imposed itself as the standard procedure for 
reporting evidence in systematic reviews and meta-analyses. 

We first collected relevant papers using the Science Direct database, 

which provides a broad coverage of engineering, management, decision 
sciences and environmental sciences papers, and then implement the 
same selection procedure on Google Scholar.3 The identification of 
relevant papers was carried out using the following list of keywords 
string: ("hydrogen" AND "supply chain") OR "hydrogen infrastructure" 
OR "hydrogen network" OR "hydrogen supply network" OR "hydrogen- 
fuel infrastructure" OR "hydrogen refueling station" OR "hydrogen 
market" OR "hydrogen value chain". The logical operator ‘OR’ was used 
to generate full search strings for articles containing at least one 
keyword string in their title, abstract or keyword. The keyword string 
"hydrogen vehicle" was deliberately omitted to filter out papers 
concentrating on the physicochemical or engineering technical aspects 
of hydrogen mobility. Our focus is specifically on hydrogen mobility 
within the context of the HSC. Since we are mostly interested in the 
methodological approaches regarding the modeling of future hydrogen 
production, storage and distribution facilities, our selection procedure is 
supply oriented. However, our list of keywords allows the inclusion of 
methodologies that propose and endogenously model market charac-
teristics, such as demand and prices, in addition to market interactions 
between various economic agents within the HSC. This first search 
resulted in a total of 16532 references found. Only peer-reviewed 
research articles written in English and belonging to the following 
subject areas were kept: ‘energy,’ ‘engineering’, ‘chemical engineering’, 
‘environmental science’, ‘social sciences’ and ‘decision sciences’. We 
should notice that papers published in ‘business/management’ are 
included into either the ‘social sciences’ or the ‘decisions sciences’ cat-
egories. A total of 9937 papers were removed, leaving a total of 6595 
records for screening. 

Selected articles sought for retrieval were then included based on the 
following criteria, which were assessed based on the screening of titles 
and abstracts:  

- Topic relevance: articles with explicit physicochemical topic were 
systematically rejected. Moreover, articles must include at least one 
search keyword in their title.  

- Hydrogen supply chain: only articles focusing on part or the whole 
HSC were included. 

This screening procedure resulted in a set of 307 articles assessed for 
eligibility. The reduction in the initial pool can be explained by the low 
number of articles that model the hydrogen supply chain or the 
hydrogen market. Indeed, many articles in the initial pool correspond to 
publications in physics, chemistry, biology, and other hard sciences 
(even when restricting to subject areas likely to contain articles meeting 
our criteria). Other papers model the hydrogen supply chain within 
refinery activities, which is not consistent with our analysis. This 
rigorous screening process ensures that our final selection of articles is 
aligned with our research objectives. Eventually, we excluded papers 
which did not satisfy both following conditions: (I) include an HSC 
model; (II) provide an explicit mathematical formulation of the HSC 
model. This leaves us with a total of 75 papers included in our final 
sample. The steps followed in our selection procedure are summarized in 
Fig. 1. However, a careful analysis of our sample shows most papers are 
engineering-like oriented and HSC papers adopting an economic 
approach are underrepresented, despite the inclusion of the ‘hydrogen 
market’ keyword. To complement our initial sample, we implement the 
same selection procedure on Google Scholar, removing duplicates. We 
obtained a list of 12 papers, resulting in a full sample of 87 records 
included. 

Interestingly, when comparing with the sample of papers 

1 https://www.bcg.com/publications/2021/capturing-value-in-the-low-car 
bon-hydrogen-market.  

2 https://www.mckinsey.com/capabilities/sustainability/our-insights/five- 
charts-on-hydrogens-role-in-a-net-zero-future. 

3 We have decided not to include Web of Science and Scopus. Indeed, as 
(MARTIN-MARTIN et al., 2018) (MARTIN-MARTIN et al., 2018) show, 
Spearman correlations of citation counts between Google Scholar and Web of 
Science/Scopus are strong across all subjects (0.78–0.99). 
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investigated in (LeiMANIER HervéMANIER Marie-Ange, 2019), 80% of 
selected papers obtained from Science Direct with our methodology and 
published before 2020 are also surveyed in (LeiMANIER HervéMANIER 
Marie-Ange, 2019). We should notice that we obtain such an important 
similarity even though we also add papers using a top-down economic 
approach in our analysis while (LeiMANIER HervéMANIER Marie-Ange, 
2019) only include bottom-up engineering approaches. The sample 
constructed in (SGARBOSSA Fabio et al., 2023) includes an even much 
higher share of our sample. As our sample shares a significant proportion 
of articles with other review papers, we can be confident that our 
research objectives and data sources converge with existing review pa-
pers which use Web of Science and Scopus as their primary databases. 
We thus think that we are working with a similar set of articles which 
serves as a strong validation of our results’ robustness. 

Papers are drawn from a collection of 25 different journals. However, 
their repartition is clearly heterogeneous regarding the number of pa-
pers published per journal. Within our sample, only 7 journals count 
strictly more than 1 publication. Like (LeiMANIER HervéMANIER 
Marie-Ange, 2019), the International Journal of Hydrogen Energy clearly 
dominates our sample with 33 publications, which accounts for roughly 
46% of papers included in our classification. Applied Energy ranks sec-
ond, with 12% of papers, followed by Chemical Engineering Research & 
Design, Energy and Computers & Chemical Engineering, which all respec-
tively account for 5% of selected papers. Overall, approximately 70% of 
papers included in our sample are drawn from only 5 journals. 

We may expect papers published within a given journal to be more 
likely to share methodological features than when comparing papers 
published by different journals. Thus, clustering may capture differences 

between journals or journals’ editorial preferences instead of pure 
methodological divergences between articles. However, following a SLR 
for constructing our sample ensures our results accurately reflect the 
editorial structure driving HSC papers publication process and may shed 
an interesting light on publication preferences of journals. 

2.2. Selection of methodological features 

In order to build a self-contained and clear list of methodological 
features used for our analysis (going beyond the traditional BU/TD 
categorization), we only use features that appear at least once in our 
sample. We use the term “feature” as a neutral and general terminology 
referring to individual modeling choices. Indeed, a given feature may 
either be modeled as a parameter, or a variable depending on the 
methodological approach. For instance, technology subsidies may be 
modeled as an exogenous parameter or as a decision variable set by a 
social planner agent. The formulation of a mathematical problem as a 
MILP is also a methodological feature. We then identified 15 principal 
features categories with 138 methodological features. 

2.2.1. “Bottom-up” model types 
Seven types of BU formulations or models are identified: Linear 

Programming (LP), Mixed Integer LP (MILP), location models (mainly 
p-median models), Value Web Models (VWM), Mixed Complementarity 
Problems (MCP) and physicochemical models. These features are not 
exclusive and may be combined within a single paper. Although they use 
LP formulation for representing techno-economic aspects of the energy 
system, MARKAL models stand as a specific model family and are thus 

Fig. 1. PRISMA protocol diagram.  
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distinguished. Following (ROSENBERG et al., 2010), this 
demand-driven model type allows a detailed representation of the de-
mand for energy services addressed by each economic sector, while 
accounting for available energy sources, energy carriers and conversion 
technologies. Introduced in (SAMSATLI Sheila and SAMSATLI Nouri, 
2015), VWM is a general MILP spatio-temporal model of energy systems 
including technology production, conversion, transport, storage, and 
transportation infrastructures. However, this model uses a specific rep-
resentation of time, exploiting periodicity via a non-uniform hierarchi-
cal time discretization, which allows the inclusion of multiple temporal 
and spatial scales while controlling the computational efficiency of the 
model. Thus, for the sake of classification, we further distinguish MILP 
from MARKAL and VWM. Mixed Complementarity Problems (MCP) 
arise as a specific type of variational inequality problem, allowing for 
the incorporation of mixtures of equations and inequalities in square 
systems of nonlinear equations. They involve Karush-Kuhn-Tucker 
(KKT) conditions of constrained nonlinear programs, regime-switching 
behavior, and market equilibrium situations. Finally, physicochemical 
models integrate equations modeling physical and chemical constraints 
of H2, such as its storage temperature and pressure. 

2.2.2. “Top-down” model types 
Seven types of TD modeling approaches are used within sample pa-

pers: dynamic system models (mostly used for modeling diffusion pro-
cesses like in (BENTO, 2010) and (HEINZ et al., 2013)), game theoretical 
approaches, discrete choice models, market equilibrium models, Cour-
not models (for oligopolistic competition), Hotelling/Salop models 
(used for spatial competition) and (dynamic) computable general 
equilibrium (CGE) models. 

2.2.3. Optimization objectives 
Most papers adopt a single agent setting, which optimizes either a 

single or, more rarely, a multi-objective function. The most frequent 
metrics to be optimized are costs, environmental performance, HSC 
reliability and risk level, social welfare, economic agents’ profits, or 
distance of refueling stations from end-users. In multi-agent settings, the 
pursued objectives for the social planner are either profit or social 
welfare, while individual agents optimize their utility or profit. 

2.2.4. Economic agents’ behavior and interactions 
“Soft variables” and parameters regarding the behavior and prefer-

ences of economic agents are rarely mentioned nor included in HSC 
models. A set of recurrent economic echelons can yet be identified, 
corresponding to distinct types of economic agents involved in the HSC. 
We assume a model is multi-agent if it includes more than one distinct 
objective function. Four types of economic agents appear in our sample: 
the government/social planner, households/final consumers, firms, and 
retailers. A rather limited set of behavioral features is found to charac-
terize these agents: our features include foresight quality, rationality, 
and risk preferences. The interactions between agents are mostly 
determined by strategic interactions, network effects, externalities, 
while their investment decisions may benefit from learning effects and 
economies of scale. 

2.2.5. Hydrogen supply chain composition and spatio-temporal 
characterization 

The HSC is traditionally decomposed into a collection of key building 
blocks. These building blocks correspond to various homogeneous 
“functional” echelons within the supply chain. Six to seven echelons can 
be identified: feedstock sources, production, storage (potentially in 
addition to long-term storage), distribution, transportation, and con-
sumption. Binary and integer decision variables are typically used to 
model the investment decisions and timing, location and size of pro-
duction and storage facilities, transportation, and distribution modes, 
among available technologies considered in the model. 

2.2.6. More specifically, HSC echelons are found to be characterized by the 
following sets of features respectively  

• Feedstock echelon: type of feedstock considered (natural gas, 
biomass, coal, water, grid electricity, hydroelectricity, solar elec-
tricity, wind electricity, nuclear), in addition to the attention paid to 
its logistics (availability, storage, transportation) and their associ-
ated costs.  

• Production echelon: CO2 emission constraints, techno-physical 
constraints on the production process, including technology and 
unit size (SMR, electrolysis, coal, and biomass gasification), onsite 
production, presence of Carbon Capture and Storage (associated with 
coal and biomass gasification).  

• Storage echelon: techno-physical constraints on storage dynamics, 
unit size, physical state of stored hydrogen (liquid, gaseous or 
through Liquid Organic Hydrogen Carriers absorption)  

• Transportation/distribution echelon: technical constraints, unit size, 
included transportation technology (LH2 tanker truck, LH2 railway, 
LH2 ship, GH2 tube trailer, GH2 pipeline), included distribution 
technology (LH2 tanker truck, GH2 tube trailer, GH2 pipeline).  

• Refueling stations echelon (specific to papers studying hydrogen 
mobility): included distribution technology, unit size. 

HSC models also differ by the type of H2 physical state and uses 
considered, including industrial use, heat production, light-duty, and 
heavy-duty mobility. Furthermore, the HSC models can be implemented 
at various spatio-temporal scales (international, national, regional, or 
urban), potentially combining multiple geographic and time scales. 
Geographical explicit models focus on the deployment of hydrogen 
infrastructure and can be combined with geospatial analysis using the 
GIS module to even model real geographic regions. 

2.2.7. Uncertainty sources and treatment 
The consideration, sources and treatment of uncertainties are also 

important modeling choices for HSC analysis. In our sample, 
uncertainty-related features mainly pertain to H2 demand level, pro-
duction costs and hydrogen price, renewable energy sources (RES) 
generation level, electricity price for electrolysers using grid electricity. 
The uncertainty is either treated via the introduction of scenarios (an 
isolated optimization run is performed for each scenario), stochastic, 
chance-constrained, robust, or fuzzy optimization formulations. 

2.2.8. Government intervention 
The modeling of public intervention is quite sparse in our sample and 

translates into taxes and price subsidies, capital grants to investments in 
hydrogen production technologies, procurement obligations, carbon 
taxes and carbon budgets. These features are always formulated as 
exogenous parameters in our sample. 

2.2.9. Hydrogen demand modeling 
The modeling of hydrogen demand, either as a parameter or a var-

iable, is pivotal. In the former case, the level and dynamic profile of H2 
demand can be based on consumers’ socio-economic characteristics and 
according to an exogenously defined penetration rate of H2 uses. When 
endogenous, demand is mostly defined as a function of prices, number of 
H2 vehicles in the and refueling stations in the relevant geographic area, 
in addition to the distance with respect to the latter. Endogenous for-
mulations also allow to model the competition of H2 with alternative 
fuels and consumer relative preferences for various fuels, that better 
capture the change in consumption habits from existing technologies to 
H2 based ones. When accounting for its geographical distribution, de-
mand may either be translated into node-based or flow-based formula-
tions. Following (LeiMANIER HervéMANIER Marie-Ange, 2020), 
node-based models consider each node as a demand point, which 
implied customers must make specific trips to facilities to consume H2. 
Flow-based formulations, such as (HUANG et al., 2015), model demand 
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as flows on a network and customers consume H2 on their way. While 
less realistic, node-based formulations are relatively easier to calibrate 
and allow lower computational complexity. 

2.2.10. Interactions of HSC with other supply chains 
Eventually, the HSC is often coupled with other supply chains, to 

model their interactions and feedback loops. The most frequently 
modeled supply chains are the electricity and gas networks, carbon 
sequestration and storage chain, and biomass supply chain. The oxygen 
market is considered in (OGUMEREM Gerald et al., 2018) and (WON 
et al., 2017) as a valuable outlet for electrolysis, while H2 supply is 
modeled as a by-product from chlor-alkali industries in (HAN et al., 
2013). 

We summarize our results in Table A1 in Appendix. Based on this set 
of methodological features, we provide a priori categories corresponding 
to “Bottom-up,” “Top-down” and “Hybrid” papers as shown in the Ref-
erences section. Papers are allocated to one of the three categories if they 
respectively include at least one model from the “Bottom-up,”,” “Top- 
down” or both types of models. Following the example of (BUENO et al., 
2020), Fig. 2 proposes an analytical framework based on BU and TD 
mathematical models and formulations identified above. It summarizes 
how statistical and clustering methods allow us to relate and compare, 
qualitatively and quantitively, both modeling approaches and provide a 
characterization of existing modeling trends, research gaps and di-
rections for hybrid HSC model development. 

2.3. Summary statistics and main characteristics of the sample of HSC 
papers 

Before getting into cluster analysis, it is worth investigating the main 
statistical characteristics of our sample. Fig. 3A and 3B Show how the 
repartition of various BU and TD mathematical models in our sample 
evolves in time. For all publication years included in our sample (cor-
responding to the period 2004–2022), we measure the cumulative fre-
quency of each model between 2004 and this publication year, for each a 
priori category identified in the above subsection. As several different 
model types may be included within a single paper, percentages are 
computed with respect to the total number of models observed in our 
sample. 

Before 2010, MILP, MARKAL and physicochemical model types 
appear as exclusive mathematical modeling approaches. They respec-
tively account for 80%, 10% and 10% of all modeling choices for BU 
formulations. From 2010, the cumulative share of models using physi-
cochemical constraints increases from roughly 8%–13.5% in 2022. 
Linear programming and p-median location models are progressively 
employed in the literature from 2012 to 2015 respectively, accounting 
for respectively 7.5% and 8.5% in 2022. Finally, VWM formulation is 
introduced in 2018 and represents 3.5% of chosen mathematical for-
mulations over 2004–2022. Globally, the number and diversity of BU 
mathematical models have globally increased over the last decade, 
although MILP models still account for an overwhelming 57% of all 
papers over the whole period. From 8.5% in 2010, the cumulative share 
of papers adopting a MCP formulation has slowly decreased, repre-
senting only 3.5% of all investigated papers overall. 

Similarly, to BU models, we see from Fig. 3B. that the choices of TD 
mathematical models evolve towards increasing diversity, with more 
evenly distributed choices. During the 2004–2009 period, dynamic 
systems, discrete choice, game theoretical and Hotelling-Salop models 
respectively account for 20%, 20%, 40% and 20% of observed modeling 
choices. CGE models start being employed in 2010 and account for 11% 
of model choices for whole period. Cournot-Stackelberg models, used to 
model oligopolistic competition between economic actors of the HSC, 
are only introduced in 2017. Yet, their cumulative share steadily 
increased to reach 14.5% of all model choices. Overall and during the 
2004–2022 period, dynamic systems and market equilibrium models 
appear as the favored choice, corresponding to 24% of modeling choices 

each, followed by game theoretical and Cournot-Stackelberg models, 
both accounting for 14.5% of observed models. Hotelling-Salop model 
evolves as the least common choice of mathematical model, represent-
ing only 7% of models. 

Considering the repartition of mathematical model choices within 
the full sample, MILP is by far the most frequent type of mathematical 
formulation, accounting for 54% of HSC modeling choices over the 
2004–2022 period. By comparison, MARKAL and physicochemical 
models are chosen by 6% and 12.5% of papers, respectively. Similarly, 
only 7% of HSC papers use market equilibrium models, while 4.5% and 
3.5% use game theoretical or CGE models, respectively. As already 
noted, several mathematical models might be used within a single paper. 
Within our full sample, approximately 30% of papers employ more than 
one of the identified mathematical models. However, this result is likely 
to be positively biased, as some models may be considered as belonging 
to subsets of larger families of models. In this respect, MARKAL models 
are designed using MILP formulation, while Cournot models are strongly 
associated with formulations that include market equilibrium 
constraints. 

Yet only 15% of papers include both BU and TD model types within a 
single methodological framework. Within this subset of papers, the most 
frequent associations are the MILP-Cournot, MARKAL-CGE and MCP- 
Market equilibrium approaches. Interestingly, the MCP formulation is 
only found within this subset. In terms of a priori categories, 73% of 
these papers belong to the “Hybrid” class of HSC papers, while the 
remaining is included in the TD class. This suggests the relevance of 
identifying an intermediary category of papers, potentially corre-
sponding to more synthetic methodological approaches. 

As shown in Fig. 4, the distribution of methodological features is 
strongly uneven: 50% of features have a probability lower than 11.5% of 
being observed. Conversely, less than 13% of features appear in more 
than 50% of our sample. Only 30% of features are observed in more than 
20% of papers. This suggests that there are few characteristics that cut 
across the methodological approaches found in the literature. 

Geographic explicitness and light-duty H2 vehicles are the most 
frequent features, included in respectively 79% and 77% of papers. A 
large majority of our sample is thus focused on the transportation ap-
plications of hydrogen. A case study is included in 86% of papers, 56% of 
which apply to a national case. The review shows that 59% of the papers 
adopt a single-objective or multi-objective optimization approach, with 
cost being the most frequently optimized features, followed by GWP 
reduction. H2 production is the most common functional echelon, 
modeled within 70% of papers, with electrolysis being the dominant 
production technology in modeling choices (61% of papers). 60% and 
65.5% of articles include the storage and transportation echelon. 

A multi-period formulation is adopted by 64.5% of papers. In terms 
of demand modeling, node-based formulations clearly dominate the 
subset of geographically explicit models. Finally, considering in-
teractions with other supply chains, we find that the electricity network 
is the most frequent choice, modeled in 22% of our sample. Similarly, 
identifying the least frequent methodological features provides valuable 
information on rare or original modeling choices. Only 22% of the ar-
ticles with a single-agent framework use multi-objective optimization, 
and less than 7% of them use social-welfare as an objective. Less than 
15% of papers use a multi-agent formulation, with 61% of this subset 
including network effects. Regarding functional echelons, only 34.5% 
and 19% of sampled papers consider H2 refueling stations and distri-
bution. Moreover, less than 40% of articles include four or more distinct 
functional echelons in their model, while only 8% of articles include all 
types of echelons. Moreover, if the distinction between storage and long- 
term H2 storage holds, we find that no article includes all functional 
echelons in a single framework. 

In terms of demand modeling, only 21% of papers formulate demand 
as a model variable (endogenous demand), and 9% consider the 
competition of alternative fuels. The flow-based formulation remains 
marginal, as it accounts for approximately 10.5% of geographically 
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explicit articles (8% of the whole sample). Only 11.5% of articles include 
socio-economic factors in their modeling of demand, either as an 
exogenous parameter or a variable. Government intervention is also 
rarely accounted for: less than 20% of papers consider at least one policy 
instrument (taxes being the most frequent) and only 3% consider more 
than three different instruments. Finally, uncertainties related to model 

parameters are mostly overlooked as less than 26% of papers account for 
at least one source of uncertainty, with respectively 84%, 25% and 5% of 
them modeling H2 demand, RES generation and electricity price un-
certainty. Yet, the level of renewable production and electricity price are 
pivotal components of the total cost of “green” hydrogen, as they 
significantly influence the unit cost of hydrogen. Thus, omitting these 

Fig. 2. Analytical framework of research methodology and objectives.  

Fig. 3A. Evolution of the repartition of “Bottom-up” mathematical models from 2004 to 2022 (Cumulative shares).  
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sources of uncertainty may result in clearly underestimating the ex-
pected total cost of electrolysis. Moreover, uncertainties pertaining to 
the price of gas are not mentioned within our sample, while gas prices 
both affect SMR and electrolysis variable costs.4 Furthermore, we note 
stochastic and scenario-based formulations are the preferred approaches 
to account for uncertainty, while robust and fuzzy optimization methods 
are chosen by only 13.5% and 8% of papers modeling uncertainty (3.5% 
and 2% of all sampled papers). Yet, as H2 consumption time series are 
still only virtual due to insufficient development of HSC infrastructures 
and H2 market, non-probabilistic methods may provide a safer way for 
quantifying hydrogen demand uncertainties. 

3. Clustering analysis & results 

3.1. Clustering methodology and performance comparison 

Our dataset is formulated as a complete disjunctive table, where each 
feature is expressed as a binary variable. The absence of continuous 
variables makes difficult the application of traditional clustering tech-
niques such as k-means clustering, which requires defining a priori 
cluster centroids. Hierarchical ascendant classification (HAC) appears as 
an appropriate method. The aim of HAC is to group individuals 
following a predefined similarity feature, where the set of all pair-wise 
distances (computed between each pair of papers) is written as a dis-
tance matrix. HAC iteratively classifies individuals by producing a 
dendrogram, starting from individual observations and producing nes-
ted classes of increasing size. 

Fig. 3B. Evolution of the repartition of “Top-down” mathematical models from 2004 to 2022.  

Fig. 4. Frequency of individual methodological feature. Note: For each feature, the blue dot corresponds to the proportion of papers verifying the feature. The 
dashed (resp. dotted) red line corresponds to the median (resp. 9-th decile) of the cumulative probability distribution. 

4 Although indirectly for the latter as the price of gas only affects the price of 
electricity during peak hours when gas turbines are dispatched by the network 
operator. 
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The choice of an adequate distance metric, to measure similarities 
between papers, is thus pivotal to account for the specificity of our data. 
We compare three types of distance metrics: the Manhattan distance (or 
L1 norm), the Jaccard distance and the Φ2 distance. The Manhattan 
distance metric computes the distance between two vectors as the sum of 
the absolute differences of their Cartesian coordinates. The Jaccard 
index, which varies between 0 and 1, measures the similarity between 
two papers as the cardinal of their intersection (equal to the number of 
common features) divided by the cardinal of their union. The Jaccard 
distance is then equal to one minus the Jaccard index. The Φ2 distance is 
mostly used in multiple correspondence analysis and computes the 
average of the squared difference between two vectors of features, 
where each feature is weighted by its frequency within the sample. For 
instance, if two papers share a methodological feature that is rare, this 
indicates they are more likely to share similar characteristics. 

For each distance metric, we can represent the distance between each 
pair of papers with a heat map. Using Manhattan distance, Figure A1 ain 
Appendix displays the existence of at least two distinct classes of papers, 
which correspond to the green areas located near the corners of the map. 
Figure A1 b, and A.1. c, respectively corresponding to the heat maps 
obtained from the Jaccard and Φ2 distances, are also disclosed in 
Appendix. 

Our clustering strategy uses the Ward method, which maximizes 
(resp. minimizes) the inter-cluster (resp. intra-cluster) inertia. By 
measuring how total cluster inertia varies with the number of clusters 
associated with each distance metric, we find the optimal number of 
clusters is either 2, 3 or 5. Figures A2 a, A.2. b and A.2. c. (in Appendix) 
respectively plot the dendrograms associated with the Manhattan, Jac-
card and Φ2 distances. Some relevant similarities can be noted between 
the three metrics: first, cutting the dendrograms into 2 clusters results 
into strongly uneven categories. When using the Manhattan distance 
(resp. the Jaccard or Φ2 distances), we find the two clusters include 75% 
and 25% of papers (resp. 76%/24% and 44%/56%). 

Furthermore, to compare the different clustering methods and 
quantify their similarity, we use the Jaccard distance to measure how 
papers are allocated between clusters when comparing two clustering 
methods. Indeed, the simpler Hamming distance may result in wrong 
results as two paper partitions may be identical up to cluster index 
permutation. For each pair of clustering approaches (corresponding to a 
couple of distance metric and number of clusters), Figures A3 a, A.3. b 
and A.3. c. in Appendix show the corresponding Jaccard similarity, 
normalized between 0 and 1, as a heat map. For 2 clusters, we note the 
Manhattan and Jaccard distance metrics yield almost identical clus-
tering results, with a Jaccard similarity of 0.975. Interestingly, as fore-
shadowed by Figure A2 b and Figure A2 c, the Jaccard similarity 
between the pair J5/P5 (0.658) is equivalent the one between J5/M5 
(0.669), which shows the classification of papers resulting from the 
Jaccard and Manhattan distance metrics are quite similar. 

Finally, to choose the most appropriate clustering methodology, we 
measure the degree of inter-cluster and intra-cluster dissimilarity using a 
comprehensive set of measurements. For each candidate distance 
metric, we quantify the inter-cluster dissimilarity using two distinct 
measures: the complete-linkage and average-linkage distances. Simi-
larly, we use the complete diameter and average diameter distances for 
measuring intra-cluster dissimilarity. Note that for consistency, both 
inter-cluster and intra-cluster distance measures must be computed 
using a single distance metric, in our case being the Jaccard distance. 
Eventually, to compare the overall clustering quality associated with our 
different approaches, we introduce a weighted-score metric based on the 
set of performance measures defined above. Additional details and 
formal definitions are given in Appendix. 

Clustering performance metrics corresponding to 2, 3 and 5 clusters 
are given in Table A2 a, A.2. b and A.2. c, respectively in Appendix. By 
comparing the clustering scores, we note that classifying our sample into 
5 paper categories using the Jaccard distance yields the highest 

clustering quality. 

3.2. Identification of the most discriminatory features for HSC 
classification 

Instead of comparing the paper clusters resulting from HAC based on 
the 137 methodological features identified above, we first restrict the 
number of candidate variables used to characterize our clusters. This 
analytical step amounts to dimensionality reduction. We select the most 
discriminant variables (the subset of features which best discriminate 
paper categories) to better identify the main differences between 
clusters. 

Two complementary methods are tested to assess the discriminatory 
power of features. First, we measure the inter-cluster variance of each 
feature, measured as the variance of a given feature across clusters. We 
weight the variance by the ratio of the relative frequency of each feature 
(relatively to the average frequency of occurrence of all features, equal 
to 20%). Fig. 5a displays the significant gaps in the inter-cluster variance 
of our methodological features, which suggests only a reduced number 
of variables are required to characterize the clusters. 

Second, we use Fisher linear discriminant analysis (LDA), which aims 
at finding the linear combination of features that maximizes the sepa-
rateness between categories of the projected data. We proxy the 
discriminating power of each feature by measuring its correlation with 
respect to the first two canonical components. We use the vector of 
cosine similarity related to each canonical component and their asso-
ciated eigenvalues.5 

Fig. 5b confirms the intuition that most variables have similar pro-
portions across paper clusters and are not discriminant, i.e., do not 
provide additional information on clusters’ exclusive characteristics. 
Finally, for both methods, we rank the features by decreasing order of 
discriminatory power and keep only two-thirds of the joint list of most 
discriminating features. After removing duplicates, we have compiled a 
list of 45 unique features. 

3.3. HSC paper categories and methodological pattern analysis 

It is worth noticing that there are few differences between the two 
classifications resulting from a priori and clustering approaches, 
although the a priori one solely relies on mathematical models. Although 
a binary classification quite accurately reflects the BU/TD opposition, it 
fails to capture the specificities of hybrid approaches. 

By passing from the 2 clusters (C1 and C2) reflecting the BU/TD 
opposition to 5 clusters (K1 to K5), C1 is roughly split into three uneven 
clusters, counting respectively 15%, 37% and 14% of sampled papers. 
C2 is split into two equal sized clusters: this suggests categories K1 to K3 
encompass more methodological diversity and modeling variety. The 
specific status of hybrid papers is well captured as 88% of papers 
identified as “Hybrid” belong to category K4 and count for 64% of the 
total number of papers included in the cluster. 

For each cluster and each feature in the vector of most discriminatory 
features, Table 2 reports the proportion of papers verifying this feature 
(see also Table 1). The strong similarities between clusters K1 and K2 
suggests that most methodological diversity is found within clusters K3 
to K5. 

Cluster K1 can be referred to as the family of Diverse HSC planning and 

5 We define the first two canonical components resulting from LDA, Z1 and Z2 

(with their associated eigenvalues λ1 and λ2). For each criterion Y ∈ Y where Y 
is the set of methodological criteria, we define as follows the degree of 
discriminating power associated with Y noted βY : 

βY =

(
λ1

λ1 + λ2

)

×cos2(Z1,Y)+
(

λ2

λ1 +λ2

)

×cos2(Z2,Y)
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operation optimization models. Indeed, alternative mathematical formu-
lations, such as MARKAL and VWM, only appear in K1, respectively 
accounting for 15% and 11% of papers. A social-planner takes opera-
tional decisions and optimizes a mono-objective function in 78% of 
papers, corresponding to costs in 85% of cases. Note that location/in-
vestment decisions remain rare (26% of papers), most articles focusing 
on HSC operational decisions. Multi-objective papers also remain mar-
ginal (11% of clustered papers). MILP is adopted by 56% of papers, 
concurrent with a strong emphasis on mathematical description. Cluster 
K1 is thus characterized a variety of Bottom-up planification models that 
minimize the total energy system cost, often using carbon emissions as 
an additional performance metric for model results. A proper modeling 
of feedstock types, availability and transportation constraints is found in 
67% of model. These features are concomitant with dominant 
geographically explicit and node-based demand formulations (89% and 
78% respectively). These models often explicitly include sets of con-
straints for each functional echelon. Finally, a strong emphasis is put on 
the detailed modeling of time and demand dynamics: multiple time-
scales are introduced (30%), allowing to model fine-scale changes in 
demand profiles with monthly, daily, and even hourly variations (59%). 
The increase in model complexity is controlled through original for-
mulations of time scales like in VWM. 

Cluster K2 shares many similarities with K1 but appears less general 
and flexible in terms of modeling choices. Most noticeably, this cluster 
regroups papers that use multi-objective optimization within a MILP 
framework. We refer to papers belonging to K2 as Classical multi-objective 
HSC design and planning optimization models. These models propose an 
integrated approach to design the optimal hydrogen network mainly in 
terms of the optimal trade-off between conflicting objectives. A multi- 
objective function is proposed in 52% of papers, while respectively 
87%, 52% and 44% of them include cost, CO2 emissions and risk in their 
objective function. However, MILP dominates mathematical formula-
tion choice (96 % of papers included), the only alternative formulation 
being physicochemical in 4% of papers. Like K1, this family of models 
strongly relies on geographically explicit formulation of investment 
location, physical flows, in addition to node-based demand definitions. 
Finally, multiple production technologies are included, with a strong 
emphasis on electrolysis and SMR. Ideally, these models tend to consider 
all functional levels and types of infrastructures (feedstock, production 
plants, refueling stations, transportation network), all types of technol-
ogies and associated features (size, type of output), in addition to the 
geographical distribution of feedstock, its logistics and associated pro-
curement constraints for H2 production plants. These models seek to 
determine the optimal investment planning, typically over a long-term 

Fig. 5a. Weighted inter-cluster variance plot. Note: The red dashed line corresponds to the average weighted variance.  

Fig. 5b. Weighted linear-discriminant analysis covariance plot Note: The red dashed line corresponds to the average covariance.  

C. Pierre et al.                                                                                                                                                                                                                                   



International Journal of Production Economics 268 (2024) 109091

11

Table 1a 
Allocation of HSC papers with 2 clusters.  

Cluster 
ID 

Size Authors/Paper ID 

C1 38 Agnolluci P. et al. (AGNOLLUCI Paolo et al., 2013); Almansoori 
A. & Shah N. (ALMANSOORI and SHAH, 2006); Almansoori A. & 
Shah N. (ALMANSOORI and SHAH, 2009); Almansoori A. & 
Shah N. (ALMANSOORI and SHAH, 2012); Almansoori A. & 
Betancourt-Torcat A. (ALMANSOORI and 
BETANCOURT-TORCAT, 2016); Balta-Ozkan N. & Baldwin E. ( 
BALTA-OZKAN Nazmiye and BALDWIN, 2013); Cantu et al. ( 
CANTU Victor and AZZARO-PANTEL CatherinePONSICH 
Antonin, 2021); Dayhim M. et al. (DAYHIM Muhammad et al., 
2014); De Leon Almaraz S. et al. (DE LEON ALMARAZ Sofia 
et al., 2013); De Leon Almaraz S. et al. (DE LEON ALMARAZ 
Sofia et al., 2014); De Leon Almaraz S. et al. (DE LEON 
ALMARAZ Sofia et al., 2015); Fazli-Khalaf M. et al. ( 
FAZLI-KHALAF Mohamadreza et al., 2020); Güray Güler M. et al. 
(GÜRAY GÜLER MehmetGECICI EbruERDOGAN Ahmet, 2021); 
Han J. et al. (HAN et al., 2013); Hugo A. et al. (HUGO et al., 
2005); Kim J. et al. (KIM et al., 2008); Kim J. et al. (KIM and 
MOON, 2008); Kim J. et al. (KIM et al., 2011); Li L. et al. ( 
LeiMANIER HervéMANIER Marie-Ange, 2020); Li Z. et al. ( 
Zheng et al., 2008); Moreno-Benito M. et al. (Moreno-Benito 
MartaAgnolucci Paolo and Papageorgiou Lazaros, 2017); 
Murthy-Konda N.V.S.N. et al. (MURTHY-KONDA et al., 2011); 
Ochoa-Bique A. & Zondervan E. (OCHOA BIQUE 
AntonZONDERVAN Edwin, 2018); Ochoa-Bique A. et al. ( 
OCHOA BIQUE Anton et al., 2019); Ochoa Robles J. et al. ( 
ROBLES JesusAZZARO-PANTEL CatherineAGUILAR-LASSERE 
Alberto, 2020); Quarton C. J. & Samsatli S. (QUARTON 
Christopher and SAMSATLI Sheila, 2020); Quarton C. J. & 
Samsatli S. (QUARTON Christopher and SAMSATLI Sheila, 
2021); Reuss M. et al. (Markus et al., 2017); Reuss M. et al. ( 
Markus et al., 2019); Rosenberg Eva et al. (ROSENBERG et al., 
2010); Sabio N. et al. (SABIO Nagore et al., 2012); Samsatli S. & 
Samsatli N. J. (SAMSATLI Sheila and SAMSATLI Nouri, 2015); 
Samsatli S. & Samsatli N. J. (SAMSATLI Sheila and SAMSATLI 
Nouri, 2018); Seo S.-K. et al. (SEO et al., 2020); Stöckl F. ( 
STÖCKL FabianSCHILL Wolf-PeterZERRAHN Alexander, 2021); 
Strachan N. et al. (STRACHAN Neil et al., 2009); Talebian H. 
et al. (TALEBIAN Hoda and HERRERA Omar, 2019); Tlili O. et al. 
(Olfa et al., 2020) 

C2 49 André J. et al. (ANDRE Jean et al., 2013); Bae S. et al. (BAE et al., 
2020); Ball M. et al. (BALL et al., 2007); Baufumé S. et al. ( 
BAUFUME Sylvestre et al., 2011); Chen Q. et al. (CHEN et al., 
2021); Cho S. & Kim J. (CHO and KIM, 2019); Coleman D. et al. ( 
COLEMAN et al., 2020); Dagdougui H. et al. (DAGDOUGUI 
HananeOUAMMI AhmedSACILE Roberto, 2012); Deng Z. & 
Jiang Y. (DENG and JIANG, 2020); Gabrielli P. et al. (GABRIELLI 
Paolo et al., 2020); Gim B. et al. (GIM et al., 2012); Hajimiragha 
A. et al. (HAJIMIRAGHA Amirhossein et al., 2009); He C.et al. ( 
HE et al., 2017); Huang Y. et al. (HUANG et al., 2015); ( 
HWANGBO Soonholee et al., 2017) (HWANGBO SoonhoLEE 
In-Beum and HAN, 2017); Li Y. et al. (LI et al., 2018); Nunes P. 
et al. (Moreno-Benito MartaAgnolucci Paolo and Papageorgiou 
Lazaros, 2017); Obara S. & LI J. (OBARA and LI, 2020); 
Ogumerem G. S. et al. (OGUMEREM Gerald et al., 2018); Park K. 
& Koo J. (PARK and KOO, 2020); Rosa L. & Mazzotti M. (ROSA 
and MAZZOTTI Marco, 2022); Sun H. et al. (SUN et al., 2017); 
Tao Y. et al. (TAO et al., 2020); Wang B. et al. (WANG et al., 
2020); Won W. et al. (WON et al., 2017); Woo Y. et al. (WOO 
et al., 2016); Wu X. et al. (WU et al., 2019); Yang G. (YANG et al., 
2020); Bae J. H. & Cho G. (BAE et al., 2010); Bento N. (BENTO, 
2010); Conrad K. (CONRAD, 2004); Espegren K. et al. ( 
ESPEGREN Kari et al., 2021); Greaker M. & Heggedal T. ( 
GREAKER MadsHEGGEDAL Tom-Reiel, 2010); Heinz B. et al. ( 
HEINZ et al., 2013); Köhler J. et al. (KÖHLER et al., 2010); Li W. 
et al. (LI et al., 2020a); Li Y. et al. (LI et al., 2020b); Li Y. et al. (LI 
et al., 2020c); Meyer P. E. & Winebrake J. J. (MEYER Patrick and 
WINEBRAKE James, 2009); Sartzetakis E. S. & Tsigaris P. ( 
SARTZETAKIS Eftichios and TSIGARIS Panagiotis, 2005); Silva 
C. M. et al. (SILVA Carla, 2014); Crönert T. & Minner S. ( 
CRONERT TobiasMINNER Stefan, 2021); Guo Z. et al. (GUO 
et al., 2021); Koirala B. et al. (KOIRALA et al., 2021); Khojasteh 
M. (KHOJASTEH Meysam, 2020); Li X. & Mulder M. (LI and 
MULDER, 2021); Liu H. et al. (LIU et al., 2021); Michalski J. ( 
MICHALSKI Jan 2017); Thiel D. (THIEL, 2020)  

Table 1b 
Allocation of HSC papers with 5 clusters.  

Cluster 
ID 

Size Authors/Paper ID 

K1 27 Agnolluci P. et al. (AGNOLLUCI Paolo et al., 2013); Balta-Ozkan 
N. & Baldwin E. (BALTA-OZKAN Nazmiye and BALDWIN, 2013); 
(BAUFUME Sylvestre et al., 2011); Cho S. & Kim J. (CHO and 
KIM, 2019); Coleman D. et al. (COLEMAN et al., 2020); 
Dagdougui H. et al. (DAGDOUGUI HananeOUAMMI 
AhmedSACILE Roberto, 2012); Deng Z. & Jiang Y. (DENG and 
JIANG, 2020); Li L. et al. (LeiMANIER HervéMANIER 
Marie-Ange, 2020); Moreno-Benito M. et al. (Moreno-Benito 
MartaAgnolucci Paolo and Papageorgiou Lazaros, 2017); 
Murthy-Konda N.V.S.N. et al. (MURTHY-KONDA et al., 2011); 
Ogumerem G. S. et al. (OGUMEREM Gerald et al., 2018); 
Quarton C. J. & Samsatli S. (QUARTON Christopher and 
SAMSATLI Sheila, 2020); Quarton C. J. & Samsatli S. ( 
QUARTON Christopher and SAMSATLI Sheila, 2021); Reuss M. 
et al. (Markus et al., 2017); Reuss M. et al. (Markus et al., 2019); 
Rosenberg Eva et al. (ROSENBERG et al., 2010); Samsatli S. & 
Samsatli N. J. (SAMSATLI Sheila and SAMSATLI Nouri, 2015); 
Samsatli S. & Samsatli N. J. (SAMSATLI Sheila and SAMSATLI 
Nouri, 2018); Stöckl F. (STÖCKL FabianSCHILL 
Wolf-PeterZERRAHN Alexander, 2021); Strachan N. et al. ( 
STRACHAN Neil et al., 2009); Talebian H. et al. (TALEBIAN 
Hoda and HERRERA Omar, 2019); Tlili O. et al. (Olfa et al., 
2020); Won W. et al. (WON et al., 2017); Woo Y. et al. (WOO 
et al., 2016); Wu X. et al. (WU et al., 2019); Yang G. (YANG et al., 
2020); Koirala B. et al. (KOIRALA et al., 2021) 

K2 23 Almansoori A. & Shah N. (ALMANSOORI and SHAH, 2006); 
Almansoori A. & Shah N. (ALMANSOORI and SHAH, 2009); 
Almansoori A. & Shah N. (ALMANSOORI and SHAH, 2012); 
Almansoori A. & Betancourt-Torcat A. (ALMANSOORI and 
BETANCOURT-TORCAT, 2016); Cantu et al. (CANTU Victor and 
AZZARO-PANTEL CatherinePONSICH Antonin, 2021); Dayhim 
M. et al. (DAYHIM Muhammad et al., 2014); De Leon Almaraz S. 
et al. (DE LEON ALMARAZ Sofia et al., 2013); De Leon Almaraz 
S. et al. (DE LEON ALMARAZ Sofia et al., 2014); De Leon 
Almaraz S. et al. (DE LEON ALMARAZ Sofia et al., 2015); 
Fazli-Khalaf M. et al. (FAZLI-KHALAF Mohamadreza et al., 
2020); Güray Güler M. et al. (GÜRAY GÜLER MehmetGECICI 
EbruERDOGAN Ahmet, 2021); Han J. et al. (HAN et al., 2013); 
Hugo A. et al. (HUGO et al., 2005); Kim J. et al. (KIM et al., 
2008); Kim J. et al. (KIM and MOON, 2008); Kim J. et al. (KIM 
et al., 2011); Li Z. et al. (Zheng et al., 2008); Nunes P. et al. ( 
NUNES et al., 2015); Ochoa-Bique A. & Zondervan E. (OCHOA 
BIQUE AntonZONDERVAN Edwin, 2018); Ochoa-Bique A. et al. ( 
OCHOA BIQUE Anton et al., 2019); Ochoa Robles J. et al. ( 
ROBLES JesusAZZARO-PANTEL CatherineAGUILAR-LASSERE 
Alberto, 2020); Sabio N. et al. (SABIO Nagore et al., 2012); Seo 
S.-K. et al. (SEO et al., 2020) 

K3 16 André J. et al. (ANDRE Jean et al., 2013); Bae S. et al. (BAE et al., 
2020); Ball M. et al. (BALL et al., 2007); Baufumé S. et al. ( 
BAUFUME Sylvestre et al., 2011); Gabrielli P. et al. (GABRIELLI 
Paolo et al., 2020); Gim B. et al. (GIM et al., 2012); Hajimiragha 
A. et al. (HAJIMIRAGHA Amirhossein et al., 2009); He C.et al. ( 
HE et al., 2017); Huang Y. et al. (HUANG et al., 2015); Hwangbo 
S. et al. (HWANGBO SoonhoLEE In-Beum and HAN, 2017); Li Y. 
et al. (LeiMANIER HervéMANIER Marie-Ange, 2020); Obara S. & 
LI J. (OBARA and LI, 2020); Park K. & Koo J. (PARK and KOO, 
2020); Rosa L. & Mazzotti M. (ROSA and MAZZOTTI Marco, 
2022); Sun H. et al. (SUN et al., 2017); Wang B. et al. (WANG 
et al., 2020) 

K4 8 Tao Y. et al. (TAO et al., 2020); Crönert T. & Minner S. ( 
CRONERT TobiasMINNER Stefan, 2021); Guo Z. et al. (GUO 
et al., 2021); Khojasteh M. (KHOJASTEH Meysam, 2020); Li X. & 
Mulder M. (LI and MULDER, 2021); Liu H. et al. (LIU et al., 
2021); Michalski J. (MICHALSKI Jan 2017); Thiel D. (THIEL, 
2020) 

K5 13 Bae J. H. & Cho G. (BAE et al., 2010); Bento N. (BENTO, 2010); 
Conrad K. (CONRAD, 2004); Espegren K. et al. (ESPEGREN Kari 
et al., 2021); Greaker M. & Heggedal T. (GREAKER 
MadsHEGGEDAL Tom-Reiel, 2010); Heinz B. et al. (HEINZ et al., 
2013); Köhler J. et al. (KÖHLER et al., 2010); Li W. et al. (LI 
et al., 2020a); Li Y. et al. (LI et al., 2020a); Li Y. et al. (LI et al., 
2020c); Meyer P. E. & Winebrake J. J. (MEYER Patrick and 
WINEBRAKE James, 2009); Sartzetakis E. S. & Tsigaris P. ( 
SARTZETAKIS Eftichios and TSIGARIS Panagiotis, 2005); Silva 
C. M. et al. (SILVA Carla, 2014)  
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horizon, i.e., the number, size, location and technology types of pro-
duction plants, storage units and refueling stations, the optimal physical 
form of H2, in addition to the optimal transportation and distribution 
infrastructures in terms of size, available technologies and physical 
flows. Overall, this class of papers uses a finer modeling (in terms of 
spatio-temporal resolution) of operational constraints than K1, and fo-
cuses on the multiple trade-offs, investigated through -constrained and 
Pareto front methods, between concurring objectives in the develop-
ment of green and safe hydrogen infrastructures. 

We refer to cluster K3 as the set of General energy-system level HSC 
models. Included papers display more mathematical formulation di-
versity than K1 and K2: only 44% of models use a MILP formulation, 
while p-median models account for 31% of clustered papers. Moreover, 
31% of articles include physico-chemical constraints in their mathe-
matical formulation of H2 production, compression, storage, and 
transportation. Papers in K3 focus more often on interactions with other 
energy systems and diverse uses of H2: respectively 31% and 25% of 
included papers model incorporate the electricity grid and the CO2 

capture and storage network. In addition, this family of models is 
characterized by its stronger emphasis on multiple H2 usages (19% of 
papers consider hydrogen demand for heating) and interactions with 
other energy networks. Compared to K2, papers in K3 are three times 
more likely to model the coupling with carbon captures and storage 
(CCS) supply chains, while the electricity network is only modeled in K1 
and K2. In summary, K3 investigates how the development of hydrogen 
infrastructures and spatial network interacts with and impacts the op-
erations of other energy sectors. More specifically, most papers seek to 
co-optimize the investment and operational decisions of the HSC and 
other energy supply chains through an integrated modeling framework. 

As mentioned, cluster K4 mostly includes papers identified as 
“hybrid”. We refer to it as Strategic interactions investment and operation 
optimization models. With a majority of geographically explicit formu-
lations (75%), this class of papers is distinct from the previous ones by its 
focus on the urban scale (50%), and a limited attention to national scale 
case studies (25%). As in K3, a strong focus is put on interactions with 
other energy supply chains, mostly electricity (62%) and gas networks 
(25%). Models with investment decisions mostly pertain to refueling 
station location and size, in a context of retailer competing for optimal 
location with strategic interactions (61%). Moreover, 61% of papers 
adopt a multi-agent framework. It is significant that also the MCP, which 
is exclusive to K4, is used by 25% of clustered papers. Moreover, K4 
articulates large proportions of both Bottom-up and Top-down models, 
especially p-median models (25%), physico-chemical models (25%), 
market equilibrium and Cournot models (both 50% of papers). The 
hybrid aspects of this class of papers are better represented in opera-
tional decision models with technical constraints on decision variables 
in a multi-agent framework. They explore the strategic uses of H2 stor-
age for profit maximization, associated to an explicit modeling of pro-
duction and storage constraints. Through market clearing and 
equilibrium conditions, producers/retailers make production, invest-
ment and storage decisions that are constrained by technical limitations 
of technologies (storage state of charge, ramping limit, minimum gen-
eration volume) and influence other agents through the price channel. 
Due to this focus on agents’ decision making and operational con-
straints, those models are uniquely formulated at the microeconomic 
level (100%). The research questions tackled by this class of papers are 
multiple: how do market interactions influence the investment, pro-
duction, storage decisions and prices of H2 under operational con-
straints? How does hydrogen storage impact the operations and 
behavior of economic agents on the electricity and gas markets? 
Regarding location decisions, these models investigate how retailer 
competition affects the emergence of a H2 refueling stations network 
and how policy-makers should intervene. Yet, this category of papers is 
characterized by the extremely poor accounting of the transportation 
echelon (12 %), while transportation constraints are totally absent. 

Finally, cluster K5 is a composite family referred to as Technological 
diffusion, spatial competition, and socio-economic assessment models. 
Diffusion and dynamic system models (46% of papers) are essentially 
found in cluster K5. Frequently formulated in a multi-agent framework 
(38%), this set of papers is the only one to investigate and investigate the 
interactions between the hydrogen network structure (in terms of den-
sity of refueling stations) and economic agents’ spatial distributions and 
their impact in terms of network effects (54%) and externalities (85%). 
The models are exclusively focused on the transportation sector. With 
the frequent exception of the production echelon, none of the identified 
functional echelons nor associated technical constraints are modeled. 
Competition between “fossil-fueled” gasoline cars and hydrogen cars is 
distinctive of K5 (61% of papers), and mostly pertains to the choice of 
transportation technologies made by consumers and its interactions 
with the economic and geographic development of (available) refueling 
infrastructures. Demand modeling is strongly endogenous (85%), as it 
depends on model variables such as relative prices of competing fuels, 
shares of users of each technology, refueling stations density and dis-
tance for each technology, in addition to consumers’ preferences such as 

Table 2 
Proportion of most discriminating features by cluster.  

Feature ID   Cluster 
ID   

1 2 3 4 5 

MILP 0.56 0.96 0.43 0.37 0 
p-median/Location model 0 0 0.31 0.25 0 
Physico-chemical model 0.11 0.04 0.31 0.25 0 
Market equilibrium 0.04 0 0 0.5 0.08 
Cournot model 0 0 0 0.5 0 
Mathematical description 0.63 0.96 0.81 1 0.62 
Mono-objective 0.78 0.52 1 0.25 0 
Cost minimization 0.85 0.87 0.75 0.12 0 
Multi-agent 0 0 0 1 0.38 
Agent – Profit/utility 0 0 0 0.86 0.23 
Strategic interactions 0 0 0 1 0.23 
Network effects 0 0 0.06 0 0.54 
Microeconomic level 0.04 0 0 1 0.61 
Macroeconomic level 0 0 0 0 0.31 
Externalities 0.04 0 0 0 0.85 
Geographically explicit 0.93 0.96 0.94 0.75 0.08 
Multi-period 0.89 0.56 0.31 0.62 0.69 
Urban scale 0.07 0 0.25 0.5 0.08 
Economic echelon - Households 0 0 0 0.37 0.92 
Economic echelon - Firms 0 0 0 0.5 0.08 
Echelon – Sources 0.67 0.61 0.25 0.37 0.23 
Echelon – Production 0.93 1 0.37 0.5 0.24 
Echelon – Storage 0.85 0.91 0.19 0.62 0 
Echelon – Transportation 0.81 1 0.69 0.12 0 
Investment decision 0.26 0.78 0.44 0.25 0.23 
Liquid H2 0.59 0.96 0.19 0 0 
Gaseous H2 0.70 0.74 0.56 0.25 0 
Light-duty vehicles 0.85 0.87 0.44 0.5 1 
Production – Technical constraints 1 1 0.44 0.5 0.08 
SMR 0.48 1 0.44 0.12 0.08 
Electrolysis 0.89 0.87 0.25 0.37 0.15 
Storage – Technical constraints 0.81 0.91 0.19 0.62 0 
Liquid storage 0.59 0.91 0.12 0 0 
Gaseous storage 0.63 0.61 0.19 0.25 0 
Transportation – Technical 

constraints 
0.81 0.91 0.56 0 0 

LH2 tanker truck 0.52 1 0.12 0 0 
GH2 trailer 0.48 0.65 0.19 0 0 
Price subsidies 0.07 0 0 0 0.38 
Alternative fuel competition 0 0 0 0 0.61 
Demand – penetration rate 0.59 0.70 0.25 0 0.15 
Endogenous demand 0.04 0 0 0.75 0.85 
Demand – dynamic profile 0.59 0 0 0.37 0 
Node-based demand 0.78 0.96 0.75 0.62 0.08 
Flow-based formulation 0.04 0.04 0.25 0.12 0 
Electricity network included 0.33 0 0.31 0.62 0 

Note: For each feature, we underline the highest value. Moreover, for each 
cluster, bold values correspond to cases where at least 50% of papers include the 
feature. 
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environmental concern. The existence of network effects creates lock-in 
effects in favor of the incumbent gasoline refueling stations or gasoline 
vehicle fleet. Many papers belonging to cluster K5 investigate the exis-
tence of barriers to entry for H2 vehicles and refueling stations in the 
presence of existing gasoline infrastructures. They model the classical 
“chicken-and-egg” problem and study what factors may create a lock-in 
in favor of dirty technologies and whether policy intervention, under the 
form of taxes and subsidies, is required to speed up the diffusion rate of 
hydrogen refueling infrastructures. The coordination and potential 
synergies between economic echelons (producers, retailers, and con-
sumers) through multi-side market models are also investigated. Finally, 
K5 is the only cluster to investigate the macroeconomic effects of the 
hydrogen economy, with a strong microeconomic basis (61%). A sig-
nificant proportion of papers, namely 23%, employ a multi-sectoral 
approach associated with CGE models, wherein sectors are frequently 
grouped into energy, transportation, and industrial clusters. In terms of 
research questions, this subset of papers investigates the economy-wide 
repercussions of the introduction of hydrogen production and trans-
portation technologies: how does hydrogen substitute for existing en-
ergy sources? What are the inter-sectoral effects of pro-hydrogen 
policies and how does hydrogen production affect the sectoral final 
energy consumption, production, and profits? Finally, on an aggregate 
level, these models investigate the impact of hydrogen on macroeco-
nomic variables like sectoral employment, investment demand, real 
aggregate consumption, wage rates, export demand and carbon emis-
sions. However, even within K5, the number of macroeconomic models 
remains modest. 

Overall, each cluster corresponds to a set of research questions with 
its associated methodological strengths and blind spots: cluster K1 and 
K2 offer the most comprehensive modeling of HSC functional echelons 
and technical constraints, with extensive use of MILP formulations. K3 
proposes more diverse mathematical formulations and a general 
approach by investigating the interactions between the HSC and other 
energy supply chains. Yet, these three groups of papers ignore how non- 
cooperative behavior and market interactions influence the optimal 
investment and operational decisions. Taking demand as exogenous 
neglects the importance of network effects and expectations on the 
development of hydrogen demand, in addition to feedback effects on 
hydrogen producers and retailers expected profits. Finally, except a 
subset of K5, all models are formulated as partial-equilibrium models, or 
focus on the interaction of hydrogen technologies with other types of 
supply chains within the energy sector. 

Our goal is thus to find pathways to integrate these pivotal modeling 
features into more classical HSC formulations, such as found in K1, K2 
and K3, which are characteristic of BU models. Hybridization efforts 
must thus concentrate on how to articulate the research questions 
identified above into a single framework. However, as found in K4, 
several directions are possible, either by adapting the classical MILP 
framework or using original mathematical formulation such as the MCP 
framework. The feasibility of such methodological hybridization and the 
pros and cons associated to existing pathways are thus investigated in 
the next section. 

3.4. Robustness checks 

Yet, as some authors appear multiple times within the sample, this 
might lead us to overestimate the relative importance of some meth-
odological approaches. They would indeed correspond to the preferred 
modeling choices and research questions of authors who appear 
frequently in the sampled literature. Thus, we control for authors pub-
lishing multiple articles within the sample by computing the Jaccard 
distance between each pair of papers. If the distance is below some fixed 
threshold for papers, we assume the two papers are roughly identical 
and randomly drop one of them from our sample. Surprisingly, only two 
pairs of papers have a Jaccard distance below 0.25. Choosing this 
threshold level and dropping two papers from our sample, we apply our 

classification method on the reduced sample. The Jaccard distance re-
mains the distance metric associated with the highest clustering score all 
number of clusters (0.0992), significantly above the scores associated to 
the Manhattan and Φ2 distances (0.0764 and 0.664). 

When comparing the robust clustering to baseline ones, we note very 
strong similarities with basically a reshuffling of cluster labels. 
Regarding cluster compositions, robust cluster K1 and baseline K2 share 
78% of papers. Similarly, 83% of papers in robust K3 are included in 
baseline K1. Finally, we note that robust K2 is identical to baseline K3, 
while K4 and K5 from both approaches are identical. Robust and base-
line clusters thus strongly overlap and result in a remarkably similar 
classification of our sample. Moreover, 87% of features found in the 
“robust” vector of most discriminatory features are found in the baseline 
vector. Checking for multiply authorship thus does not significantly 
affect our clustering results and has a limited impact on the set of fea-
tures used to analyze their differences. 

4. A discussion of the opportunities and challenges for 
developing hybrid methodological approaches in HSC modeling 

Following (HELGESEN Per Ivar, 2013; TAALBI Josef and NIELSEN, 
2021), soft-linking corresponds to a framework in which the processing 
and exchange of information between several models is controlled by 
the user. The user evaluates the models on a set of Common Measuring 
Points (CMPs), within the subset of variables where models overlap6 and 
for which models should yield identical results. If not, the user manually 
modifies models’ input to make them converge. With hard-linking, in-
formation exchange and processing between models is done automati-
cally through computer programs. An algorithm negotiates the results 
over the subset of overlapping variables. Finally, integrated models 
directly influence each other into a single framework. 

Soft-linking offers more transparency and learning about how 
models behave and react to changes in inputs. Hard-linkage provides 
higher productivity, especially as the volume of model runs increases, 
uniqueness, and better control on models’ output. However, for both 
types of linkage, the control of noise resulting from divergent measures 
at CMPs is difficult as most of the useful sets of CMPs are non-exclusive, 
which makes uncertainty analysis quite tricky. Hybrid models, which 
correspond to the type of integrated model linkage, avoid these 
convergence issues, and thus appear as the best option. 

4.1. Identification of “polarizing” methodological choices 

Considering the classification from Section III, we use a features- 
based approach to quantify the difficulty of hybridizing methodolog-
ical approaches from various clusters. We proxy it by measuring the 
methodological uniqueness associated with each feature, corresponding 
to the degree of “methodological” proximity with alternative features 
within a given model formulation. The interpretation is simple: a low 
divergence score ΔY,Y′ means that features Y and Y′ are strongly related 
in methodological choices. Intuitively, two features with a low diver-
gence score consistently appear jointly in models, which indicates 
associating these features within a single broader methodological 
framework is frequent. This may either mean that associating these two 
modeling choices is simple, or that one methodological choice implies 
making the other one. 

Finally, we introduce a repulsion score to quantify polarizing 
methodological choices: intuitively, a feature with a low score can be 
utilized in various methodological frameworks without requiring 

6 CMPs reacting to changes everywhere within the overlapping area are 
called inclusive. CMPs that are independent, i.e., have non-overlapping influ-
ence areas, are said to be exclusive. The influence area of a CMP corresponds to 
the set of variables for which a change causes a change of the value measured at 
the CMP. 
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significant modifications of the model. For instance, a multi-agent 
formulation is expected to be highly polarizing as the possible mathe-
matical formulations, choice of variables and parameters are a priori 
quite incompatible with a MILP formulation. The formal description of 
both scores is given in Appendix. 

The distribution of the resulting pair-wise normalized divergence 
scores is plotted in Fig. 6a. Strikingly, 56% of all features pairs have 
normalized divergence score below the average, equal to 0.79. With a 
standard deviation of 0.46, less than 18% of feature pairs have a score 
one standard deviation above the mean, as suggested by the fat-tailed 
distribution. This suggests most features play non-polarizing methodo-
logical roles within investigated models, and thus do not significantly 
drive formalization and modeling choices. For instance, it is relatively 
simple to add taxes or technology-specific subsidies as additional cost 
parameters in both a MILP and a Cournot model. Likewise, other energy 
supply chains are easily integrated within optimization models by 
minimizing the summed costs of both the HSC and additional network 
through co-optimization. On the opposite, a minority of features pairs 
exhibit a large divergence, which optimistically suggests only a small 
subset of methodological features might be difficult to associate within a 
single framework. 

When plotting the normalized repulsion scores in Fig. 6b, the dis-
tribution of scores exhibits a strong right-skew, with 68% of features 
having a score below the average. Only 17% of features scores are above 
one standard deviation. Intuitively, features with high scores polarize 
formalization choices because they are only strongly associated with 
some subset of modeling features. Thus, we may rank features by 
decreasing repulsion score in order to establish a hierarchy in terms of 
driving methodological choices. We identify three classes as presented 
in Table 3. 

On the one hand, unsurprisingly, alternative fuels competition, 
associated with the modeling of economic households’ decision making 
and multi-agent approaches, are the strongest driving features. 
Considering alternative fuels to H2 (typically gasoline for mobility uses) 
implicitly requires formulating substitutability patterns between 
competing fuels. Strategic interactions have a strong influence as they 
imply defining hydrogen demand as a function of competing network 
sizes (expressed as the results of interactions between users and poten-
tial users in the Baas model, see (HEINZ et al., 2013)), in addition to 
several measurable characteristics including, but not limited to, relative 

prices of alternative fuels, relative vehicle price, CO2 price, and con-
sumer preferences. Still, dynamic systems and diffusion models do not 
precisely account for the detailed topology of competing networks. A 
proper modeling of hydrogen demand must thus satisfy two conditions: 
first, because the hydrogen refueling network is a spatial phenomenon, 
hydrogen demand must be defined on a (discrete) metric space, such as a 
graph; second, it can be equal to zero if the hydrogen refueling network 
is inexistent or the cost of hydrogen mobility is too high compared to 
alterative options. Indeed, papers included in our sample suffer from a 
teleological bias as none allows the case where no investment occurs at 
optimality and hydrogen demand remains null. 

In this respect, using a multi-period model makes little sense if the 
transition dynamics from early to developed stages of the HSC are not 
well represented. Modeling future demand dynamics using a determin-
istic sequence of values based on future projections, or probabilistic 
scenarios, makes the implicit assumption that the evolution of hydrogen 
demand is exogenous and independent from the development of the HSC 
and refueling stations network. As stated in (BAKKER, 2021) and 
(TAALBI Josef and NIELSEN, 2021), electric vehicles in the early 20th 
century were comparable to gasoline ones on a cost basis when adjusting 
prices for performance and range. Yet, the limited development of the 
electricity network constrained electric cars manufacturers to urban 
areas, helping to lock the industry into a carbon-intensive technology 
choice. Policy instruments like carbon tax or subsidies may be ineffec-
tive in practice without sufficient refueling infrastructures (see (SART-
ZETAKIS Eftichios and TSIGARIS Panagiotis, 2005) for a modeling of 
their interactions). H2 demand should thus be formulated as a function 
of the station network structure, associated with a measure of users’ 
“range anxiety” (see (HUANG et al., 2015)). 

When possible, expressing the optimal price and number of refueling 
stations (like in (CONRAD, 2004) and (GREAKER MadsHEGGEDAL 
Tom-Reiel, 2010)) as linear combinations of the above features would be 
compatible with BU approaches. Yet, it may not be possible to get linear 
or closed form expressions when incorporating technical limits for 
production, storage, and transportation units as inequality constraints 
on decision variables. These modeling objectives are typically unfeasible 
in conventional BU formulations. Indeed, BU traditionally use shadow 
prices associated with programming constraints to proxy energy prices. 
Yet, following (BÖHRINGER ChristophLÖSCHEL Andreas, 2006), the 
shadow price may actually not coincide with market prices, which 

Fig. 6a. Distribution of normalized pairwise divergence scores. Note: The divergence score is normalized by subtracting the mean and dividing by its standard 
deviation. Each column corresponds to 10% of all potential pairs of methodological features. The red vertical line equals the mean divergence score. 

C. Pierre et al.                                                                                                                                                                                                                                   



International Journal of Production Economics 268 (2024) 109091

15

violates the “integrability” condition required to use conventional pro-
duction functions, such as CES functions in CGE models. MCP appears as 
a more general and flexible formulation that guarantees “integrability” 
and endogenously model prices. 

In addition, the high repulsion scores associated to mono-objective, 
cost optimization and geographically explicit models is characteristic 
of BU models. As pointed in Table 2, those features have a much lower 
probability of occurrence in clusters K4 and K5. HSC “functional” ech-
elons are also absent from K5 and are very poorly modeled in K4, which 
explains the moderate driving strength of these features in terms of 
repulsion score. A realistic HSC must both account for various functional 
echelons, from feedstock and hydrogen production to delivery to final 
consumers or refueling stations, and explicitly model the technical 
constraints associated with each of them. We note that the quasi totality 
of modeling features analyzed in (LeiMANIER HervéMANIER 
Marie-Ange, 2019), considering only the set of features relevant for K1 
to K3, are low driving features: they pertain to the choice of technolo-
gies, technological characteristics (unit sizes available), H2 physical 
state for production and storage, in addition to non-driving features such 
as inclusion of CCS for CO2 emitting H2 production technologies. All 
those features, in addition to exogenous subsidies and taxes, can be 
simply included within a MILP formulation, at the price of higher model 
complexity and resolution time. 

Based on the above requirements, a subset of promising modeling 
approaches can be identified in our sample, more specifically from 

papers included in K4. Two main types of mathematical formulations 
can be distinguished: extensions based on linear and non-linear pro-
gramming, and MCP models. 

4.2. Existing hybrid approaches and future hybridization perspectives 

The first family of hybrid models encompasses various adaptations of 
the basic LP formulation. A first possibility is to linearize the KKT con-
ditions of the initial problem: using a multi-agent framework, where 
each agent separately maximizes its individual profit, the model in (GUO 
et al., 2021) is reformulated into a set of market equilibrium conditions 
derived from the first-order conditions. The reformulated problem 
proposes a set of equations and inequality constraints and is transformed 
into a MILP using the Big-M method, which introduces auxiliary binary 
variables to reformulate each complementarity and non-linear con-
straints as a set of linear constraints. The example of (GUO et al., 2021) 
shows that features such as the integration of demand uncertainty (using 
a robust approach in this case), have a very low driving force and do not 
significantly modify the model formulation. Yet, linearization methods 
may significantly increase the model complexity, which increases 
exponentially with the number of nonlinear equations to reformulate. 
Efficient formulations, preserving high spatio-temporal resolution of the 
model while controlling the computational efficiency of the model such 
as in VWM, or reducing the number of integer variables and constraints 
(see (NUNES et al., 2015)), may come handy to limit the explosion of 

Fig. 6b. Normalized repulsion score by methodological feature. Note: The plain (resp. dashed and dotted) line corresponds to the mean value (resp. one and two 
standard deviations above the mean). 

Table 3 
Categories of polarizing methodological features based on repulsion score ranking.  

Feature Group Type Size Feature/Feature ID 

“Strong” driving 
features 

9 Multi-agent; Alternative fuel competition (); Economic echelon - Households; Mathematical description; Strategic interactions; Transportation – 
Technical constraints; Endogenous demand; Agent – Profit/utility; Cournot model 

“Moderate” driving 
features 

14 Microeconomic level; Light-duty vehicles; Geographically explicit; Mono-objective; Cost minimization; Node-based demand; MILP; Echelon – 
Transportation; Demand – penetration rate (); Multi-period; Echelon – Storage; Storage – Technical constraints; Risk/reliability optimization; 
Externalities 

“Low” driving features 20 Electricity network included; Echelon – Retailers; Liquid H2; Production – 
Technical constraints; Echelon – Production; LH2 tanker truck; Gaseous H2; Liquid storage; GH2 pipeline; Demand – penetration rate; Electrolysis; 
Echelon – Sources; GH2 trailer; Dynamic system/diffusion models; National scale; p-median/Location model; Macroeconomic level; Network 
effects; Gaseous storage; SMR 

Note: The “strong” driving features correspond to the class of features with normalized repulsion score above two standard deviations. Similarly, “moderate” (resp. 
“low”) driving features include features with normalized repulsion score between one and two standard deviations (resp. between zero and one standard deviation). 
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CPU time. 
Multi-agent interactions and macroeconomic models may also be 

formulated as multi-player or multi-sector games in a market, with 
possibly contradicting objective functions, integrated within a classic 
MILP. The solving strategy then depends on the structure of the game. 
(KHOJASTEH Meysam, 2020) model a Stackelberg game with residen-
tial electricity consumers (the followers) and a Micro-grid Operator 
(MGO, the leader) with hydrogen storage. The hierarchical decompo-
sition allows writing a lower-level problem (consumers minimizing the 
energy procurement costs) and upper-level problem (the MGO maxi-
mizes her profit under network and thermal operational constraints). 
Similarly, to the multi-objective optimization case (see (ROBLES 
JesusAZZARO-PANTEL CatherineAGUILAR-LASSERE Alberto, 2020)), 
this formulation allows for sequential solving with the help of genetic 
algorithms. Finally, if player actions are defined as integer variables 
(allowing both the representation of discrete investment and operational 
decisions under start-up or storage constraints for instance), the game 
can be formulated as an Integer Programming Game (IPG). IPG are a 
class of non-cooperative and non-convex games in which each strategic 
player must solve a MIP problem. The solution set of each player is 
described as a collection of lattice points bounded by a set of linear in-
equalities. Under the (strong) assumption that solution sets are neither 
empty nor unbounded, the existence of at least one (pure or mixed 
strategy) equilibrium is proven in (CARVALHO et al., 2022), which 
proposes two algorithmic approaches guaranteed to approximate the 
equilibrium under mild conditions. By encoding solution sets with short 

rational generating functions, (Matthias and RYAN Christopher, 2011) 
present efficient algorithms for enumerating all pure Nash equilibria 
with piecewise linear convex payoff functions. 

Yet, in the presence of both complementarity conditions and in-
equalities, MCP appears as a natural framework for problems that are 
hard to formulate using classic optimization tools. Following (MURPHY 
FrédéricPIERRU AxelSMEERS Yves, 2016), MCP models have become 
commonplace for analyzing market responses to policy interventions, as 
in (BAE et al., 2010). MCPs are particularly adapted to situations which 
require explicit formulation and manipulation of the solutions to linear 
programs (e.g., prices). Compared to MILP approaches, MCP avoids the 
requirement of closed-form expressions for KKT conditions. Moreover, 
as in (Jan et al., 2019), bilevel MCP formulations can be used to model 
the interactions of a benevolent regulator, who minimizes societal en-
ergy system through optimal policy choice, with profit-maximizing 
agents within the HSC. This allows for an endogenous formulation of 
taxes and subsidies required for optimal HSC deployment. Finally, 
(BÖHRINGER ChristophLÖSCHEL Andreas, 2006) show MCP can 
articulate a BU model of the HSC with a CGE model describing other 
sectors at an aggregate level using CES functions. Yet, the non-convex 
structure of MCPs makes them particularly challenging to use. More-
over, we can notice that (LI and MULDER, 2021) and (MICHALSKI Jan 
2017) only include continuous variables in their MCP formulations. As 
stated by (GABRIEL et al., 2021), MCPs constrained by integrality con-
ditions are much harder than continuous MCPs and have been relatively 
unstudied. To address this issue, the authors propose a purely contin-
uous reformulation of integrality constraints as complementarity con-
straints with promising solution time and quality. 

Regarding endogenous network-dependent formulations of demand, 
a promising solution is proposed in (CRONERT TobiasMINNER Stefan, 
2021), coupled with an IPG formulation. Using a flow-based formulation 
of demand on a graph, the flow of H2 vehicles between each pair of 
nodes is both a function of customer preferences and refueling stations 
distribution on the graph. Using a multinomial logit choice model, the 
probability that a customer chooses an active refueling facility is a 
function of her preferences regarding maximum deviation distance, fa-
cility attractiveness and distance. A similar approach may be developed 
to model the aggregate probability of adopting H2 vehicles as a function 
of relative vehicle prices when comparing technologies, autonomy, 
preferences, and hydrogen refueling stations network development. We 
leave this question open for further research. 

Table 4 provides a summary of the most promising methodological 
choices and formulations for the modeling various elements of the HSC 
within a hybrid model. Although incomplete, it provides a formal basis 
of hybrid modeling elements that comply with the methodological re-
quirements identified above. However, we leave it for further research 
how to best articulate these elements within a single framework, both in 
terms of mathematical complexity and performance regarding solution 
time and decision optimality. 

5. Conclusion 

5.1. Theoretical contribution 

By using both qualitative and quantitative methods through clus-
tering, or paper presents a comprehensive and structure classification of 
the existing methodological approaches for modeling HSC and hydrogen 
markets. While recent review papers such as (LeiMANIER HervéMA-
NIER Marie-Ange, 2019) and (SGARBOSSA Fabio et al., 2023) focus on 
the BU-HSC literature, this paper is the first to our knowledge to include 
TD literature into a complete assessment of the models and mathemat-
ical formulations used to answer a variety of hydrogen-related research 
questions. 

By first identifying a set of methodological choices found in existing 
HSC models, we propose a methodological classification of the literature 
by using hierarchical clustering. Each paper category is characterized by 

Table 4 
Methodological elements for a hybrid HSC model.  

Feature Category Modeling directions 

Mathematical 
formulation  

➢ MILP: Linearization of KKT conditions of the initial MILP 
problem; bilevel or multi-level formulation for hierar-
chical multi-agent framework.  

➢ Integer Programming Games (IPG)  
➢ Mixed Complementarity Problem (MCP) 

H2 demand 
formulation  

➢ Closed-form expression: Cournot model with asymmetric 
costs, including transportation costs; Hotelling model; 
Salop model.  

➢ Multinomial logit choice: multimodal choice between 
alternative fuel types (dependent on relative vehicle and 
fuel prices, in addition to consumer preferences), and 
between competing refueling stations located on a graph; 
nested multinomial model to hierarchize vehicle choice 
and refueling station choice.  

➢ Representative consumer utility function 
(macroeconomic perspective): maximization of inter- 
temporal utility with exogenous mobility and/or heating 
requirements, under inter-temporal budget constraint. 
Model H2 and alternative fuel vehicles as additive com-
ponents in the utility function (substitutes), and distri-
bution networks parameters as being multiplicative with 
respect to mobility choices (complements). 

Price formulation  ➢ Closed-form expression: Cournot model; Hotelling 
model; Salop model.  

➢ Shadow value (classical MILP formulation) but entails 
exogenous prices.  

➢ Endogenous price formulation from KKT system derived 
from market-clearing and zero-profit conditions. 

Strategic interactions  ➢ MILP with linearized KKT conditions/MCP: coordination 
through price and volume channels.  

➢ IPG: payoff-functions, reaction functions. 
Technical constraints  ➢ MILP with linearized KKT conditions/MCP: 

reformulation of technical constraints as system of 
equalities and inequalities with complementarity 
conditions.  

➢ IPG: include technical constraints in the definition of the 
set of strategies of each player. 

Government 
intervention  

➢ Modeling of taxes and subsidies as exogenous scalar 
parameters.  

➢ Endogenous policy variables as decision variables of a 
benevolent regulator which maximizes social welfare or 
some other criterion (H2 vehicle penetration, CO2 

emissions).  
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a set of research questions, preferred mathematical models and meth-
odological formulations. In addition, by identifying the analytical blind- 
spots associated with each category, our work allows a discussion of the 
pros and cons associated with existing approaches and pinpoints how 
these could complement each other within hybrid models. Finally, we 
introduce original metrics that allow us to quantify statistically the de-
pendency of methodological choices, in terms of joint frequency of 
occurrence within sampled papers and “repulsion” strength. This allows 
us to map the HSC modeling choice patterns made by authors and un-
derstand why some methodological features appear frequently together, 
or some features seem mutually exclusive. A careful qualitative analysis 
ultimately enables us to explain if those patterns are the consequence of 
modeling habits within the HSC modelers community, or if there exist 
strong mathematical and formal difficulties preventing the association 
of specific model elements within an integrated framework. 

This analysis finally allows us to identify and provide some meth-
odological requirements and elements for developing hybrid models of 
the HSC, articulating the strengths of both BU and TD models. 

5.2. Managerial implications 

As noted above, most methodological choices and features discussed 
in other HSC reviews are low driving choices and can be simply 
accommodated within a classical MILP framework. Thus, practitioners 
interested in the economic and technological impact of introduction 
taxes and subsidies may introduce such features as exogenous that enter 
the objective function and constraints, in the form of additional costs 
(possibly negative for subsidies) or constraints (for instance, upper CO2 
emission bounds when considering a carbon budget for the HSC). 

Practitioners concerned with the “chicken-and-egg" problem of H2 
supply and demand actual realization may strongly benefit from 
modeling demand as exogenous, as a function of H2 price (or LCOH) and 
infrastructure development at least, to identify the conditions for the 
emergence of a structured aggregated hydrogen demand. Considering 

the arbitrage between H2 and alternative fuels technologies in the 
definition of the demand function is also a prerequisite to properly 
model the transition from carbon emitting to H2 technologies. Coupled 
with a sensitivity analysis on taxes and subsidies, this provides a relevant 
modeling approach for identifying optimal public policies that would 
foster both hydrogen supply and demand. 

5.3. Limitations and suggestions for future research 

As previously noted, the mathematical formulations proposed for 
developing hybrid models may seriously increase model complexity and 
may be difficult to implement for large-scale case studies. The intro-
duction of binary variables to linearize the KKT conditions of the opti-
mization problem into a MILP is a good example. Similarly, the 
consideration of integrality conditions on decision variables introduces 
non-convexities in MCP models, which adds considerable complexity 
and may require formulations to ensure model tractability and solv-
ability. Those limitations thus require for future research a careful 
analysis of the pros and cons associated with hybrid modeling elements 
identified in this paper, in terms of mathematical tractability, solv-
ability, solution time and interpretability of results. Finding the optimal 
combination of those elements within a consistent framework is outside 
the scope of the present article but shall thus be investigated in future 
work. 

We also think that, when developing a model to optimize HSCs using 
a hybrid approach combining engineering and economics, future work 
should include the technological aspects and the development potential 
of the energy system while considering the strategic interactions be-
tween the different actors in the market in order to optimize either the 
objective of each individual actor or the social welfare. 

Data availability 

Data will be made available on request.  

Appendix  

Table A1 
Methodological features categories and list  

Features Category Size Features Name 

“Bottom-up” mathematical 
models 

7 Linear Programming; Mixed-Integer Linear Programming; p-median/Location model; MARKAL; Value Web Model; Mixed 
Complementarity Problem; Physico-chemical model; Mathematical description 

“Top-down” mathematical 
models 

9 Dynamic system/diffusion models; Input-output models; Discrete choice models; Market equilibrium; Game theory; Cournot model; 
Hotelling/Salop models; (Dynamic) Computable General Equilibrium models; Microeconomic level; Macroeconomic level 

Social planner’s objectives 8 Mono-objective; Multi-objective; Cost; GWP/environmental performance; Risk/reliability; Social welfare; Profit; Distance 
Economic agents’ objectives 3 Principal – Social welfare; Principal – Profit; Agent – Profit/utility 
Economic agents’ features and 

echelons 
17 Multi-agent; Multi-sectoral; Strategic interactions; Network effects; Perfect rationality; Perfect rationality mention; Perfect foresight; 

Perfect foresight mention; Risk aversion; Risk aversion mention; Learning effects; Economies of scale; Externalities; Echelon – Social 
planner; Echelon – Households; Echelon – Firms/producers; Echelon – Retailers 

Spatio-temporal features and 
echelons 

15 GIS (Geographic Information System) module; Geographically explicit; Multi-period; Multiple time scales; International scale; National 
scale; Regional scale; Urban scale; Echelon – Feedstock; Echelon – Production; Echelon – Storage; Echelon – Long-term storage; Echelon – 
Transportation; Echelon – Distribution; Echelon – Refueling stations/demand nodes; Investment decision 

Feedstock echelon 9 Natural gas; Biomass; Coal; Water; Grid electricity; Hydroelectricity; Solar electricity; Wind electricity; Nuclear electricity 
H2 physical form and uses 6 Liquid H2; Gaseous H2; Industrial use; Heat; Light-duty vehicles; Heavy-duty vehicles 
Production echelon 10 Technical constraints; Unit size; SMR (Steam Methane Reforming); Coal gasification; Biomass gasification; Electrolysis; Onsite SMR; 

Onsite electrolysis; SMR with CCS (Carbon Capture & Storage); Coal gasification with CCS; Biomass gasification with CCS 
Storage echelon 5 Technical constraints; Unit size; Liquid storage; Gaseous storage; LOHC storage 
Transportation echelon 7 Technical constraints; Unit size; LH2 tanker truck; LH2 railway; LH2 ship; GH2 trailer; GH2 pipeline 
Distribution echelon 5 Technical constraints; Unit size; LH2 tanker truck; GH2 trailer; GH2 pipeline 
Refueling stations echelon 2 Unit size; Technology type 
Uncertainty sources and 

treatment 
9 Demand; Costs; Price/revenue; RES generation; Treatment – Scenarios; Treatment – Stochastic; Treatment – Chance-constraint; 

Treatment – Robust; Treatment – Fuzzy 
Government intervention 7 CO2 emission constraints; Taxes; Price subsidies; Capital grants; Carbon tax; Carbon budget; Procurement obligations for refueling 

stations/retailers 
Demand features 7 Alternative fuels competition; Socio-economic characteristics; Penetration rate modeling; Endogenous demand; Dynamic profile; Node- 

based formulation; Flow-based formulation 
Integration to other supply 

chains 
8 Industrial H2; Utility; Oxygen; Heat; Biomass; Electricity network; Gas network; Carbon sequestration and storage 

Note: The numerical identifier of each feature is provided between brackets. 
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Figure A1a. Manhattan distance heat map.  

Figure A1b. Jaccard distance heat map.   
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Figure A1c. Φ2 distance heat map.  

Figure A2a. Clustering dendrogram associated to the Manhattan distance metric.  

Figure A2b. Clustering dendrogram associated with the Jaccard distance metric. 
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Figure A2c. Clustering dendrogram associated with the Φ2 distance metric.  

Figure A3a. Pairwise cluster Jaccard distance heat map, 2 clusters. Note: M2 (resp. J2 and P2) corresponds to the association of the Manhattan distance (resp. 
Jaccard and Φ2 distances) with 2 clusters.  
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Figure A3b. Pairwise cluster Jaccard distance heat map, 3 clusters.  

Figure A3c. Pairwise cluster Jaccard distance heat map, 5 clusters. 
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Appendix to 2.3.: Formal definition of clustering performance metrics. 
Let us consider a pair of clusters Ck and Ck′, 1≤ k < k′≤ K, where K is the total number of clusters. We define X the set of sampled papers. We note 

Xk and Xk′ a pair of objects (in the present investigation, these correspond to HSC-related papers) belonging to Ck and Ck′ respectively. Then, we define 

the inter-cluster complete linkage and average linkage distances, noted δk,k′

1 and δk,k′

2 , as follows: 

δk,k′
1 ={Xk ∈CkXk′ ∈Ck′}

δk,k′
2 =

1
|Ck||Ck′|

∑

Xk∈CkX
k′∈C

k′

J(Xk,Xk′)

Similarly, for any fixed cluster Ck, 1≤ k ≤ K, we define the intra-cluster complete diameter distance and average diameter distance, noted Δk
1 and Δk

2 
respectively: 

Δk
1 =max

{
J
(
Xk

1,X
k
2

)
,
(
Xk

1,Xk
2

)
∈Ck ×Ck

}

Δk
2 =

1
|Ck|(|Ck|− 1)

∑

(X1
k ,X

2
k )∈CkX

k′∈C
k′

J
(
X1

k ,X2
k

)

The global quality of the clustering procedure increases with inter-cluster distance and decreases with intra-cluster distances. This expresses the 
fact that a group of observations belonging to a given cluster must share more similarities overall than with another group belonging to a different 
cluster. Thus, for each combination of candidate distance metric and number of clusters K, we define its performance score σK that we define as 
follows: 

σK =
∑K

k=1

[(
1

K− 1
∑

k′>k

(NCk∪C
k′

N

)
δk,k′

1 + δk,k′
2

2
−

(
NCk

N

)
Δk

1 + Δk
2

2

)]

For any pair of clusters Ck and Ck′, 1≤ k < k′≤ K, NCk∪Ck′ 
is equal to the cardinal of their union, while Nk corresponds to the cardinal of Ck. We easily 

verify that the sum of the NCk∪Ck′
, taken over all pairs of clusters (accounting for order) is equal to (K − 1)N. The value of σK increases with the sum of 

inter-cluster distances associated with each pair of clusters, where δk,k′
1 and δk,k′

2 are weighted equally and decreases with the set of intra-cluster dis-
tances of each cluster. Since 0≤ J(Xk,Xk′) ≤ 1, we have − 1 ≤ σK ≤ 1, where σK increases with clustering quality. Finally, our weighting approach 
ensures that clusters which include a large number of observations have a stronger impact on σK.  

Table A2a 
Clustering performance metrics (2 clusters)  

Distance Cluster k Cluster k′ δk,k′

1 δk,k′

2 
Δk

1 Δk
2 σK 

Manhattan 1 1 – – 0.821 0.544 0.0512 
1 2 0.855 0.618 – –  
2 2 – – 0.788 0.596  

Jaccard 1 1 – – 0.821 0.547 0.0525 
1 2 0.855 0.618 – –  
2 2 – – 0.782 0.585  

Φ2 1 1 – – 0.687 0.468 0.0674 
1 2 0.855 0.618 – –  
2 2 – – 0.830 0.648    

Table A2b 
Clustering performance metrics (3 clusters)  

Distance Cluster k Cluster k′ δk,k′

1 δk,k′

2 
Δk

1 Δk
2 σK 

Manhattan 1 1 – – 0.692 0.479 0.0764 
1 2 0.821 0.544 – –  
1 3 0.846 0.604 – –  
2 2 – – 0.821 0.603  
2 3 0.855 0.658 – –  
3 3 – – 0.787 0.596  

Jaccard 1 1 – – 0.790 0.498 0.0558 
1 2 0.821 0.547 – –  
1 3 0.855 0.608 – –  
2 2 – – 0.760 0.580  
2 3 0.827 0.645 – –  
3 3 – – 0.782 0.585  

Φ2 1 1 – – 0.687 0.468 0.0811 
1 2 0.847 0.571 – –  

(continued on next page) 
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Table A2b (continued ) 

Distance Cluster k Cluster k′ δk,k′

1 δk,k′

2 
Δk

1 Δk
2 σK 

1 3 0.855 0.595 – –  
2 2 – – 0.803 0.614  
2 3 0.830 0.648 – –  
3 3 – – 0.762 0.536    

Table A2c 
Clustering performance metrics (5 clusters)  

Distance Cluster k Cluster k′ δk,k′

1 δk,k′

2 
Δk

1 Δk
2 σK 

Manhattan 1 1 – – 0.557 0.366 0.0775 
1 2 0.692 0.479 – –  
1 3 0.786 0.549 – –  
1 4 0.662 0.447 – –  
1 5 0.846 0.639 – –  
2 2 – – 0.692 0.487  
2 3 0.803 0.552 – –  
2 4 0.783 0.516 – –  
2 5 0.833 0.621 – –  
3 3 – – 0.760 0.581  
3 4 0.821 0.603 – –  
3 5 0.827 0.644 – –  
4 4 – – 0.621 0.514  
4 5 0.855 0.644 – –  
5 5 – – 0.787 0.596  

Jaccard 1 1 – – 0.790 0.538 0.0875 
1 2 0.790 0.498 – –  
1 3 0.821 0.587 – –  
1 4 0.847 0.598 – –  
1 5 0.855 0.637 – –  
2 2 – – 0.614 0.387  
2 3 0.786 0.524 – –  
2 4 0.803 0.522 – –  
2 5 0.841 0.580 – –  
3 3 – – 0.760 0.580  
3 4 0.804 0.628 – –  
3 5 0.827 0.634 – –  
4 4 – – 0.737 0.568  
4 5 0.782 0.585 – –  
5 5 – – 0.658 0.496  

Φ2 1 1 – – 0.656 0.470 0.0721 
1 2 0.687 0.452 – –  
1 3 0.818 0.610 – –  
1 4 0.846 0.545 – –  
1 5 0.656 0.492 – –  
2 2 – – 0.614 0.383  
2 3 0.803 0.568 – –  
2 4 0.841 0.590 – –  
2 5 0.657 0.424 – –  
3 3 – – 0.803 0.614  
3 4 0.830 0.648 – –  
3 5 0.847 0.616 – –  
4 4 – – 0.762 0.536  
4 5 0.855 0.606 – –  
5 5 – – 0.441 0.364   

Appendix to 4.1: Formal definition of the divergence and repulsion sores. 
We first define Y as the set of methodological features. For each pair of features (Y,Y′)∈ Y × Y , we note its associated modified Jaccard index 

JI(Y,Y′) and define it as follows: 
By slight abuse of notation, Y ∈ X being true is equivalent to feature Y being included in the formulation of the paper X. The denominator is equal to 

the total number of papers in X which include at least one of the features Y or Y′. We define the weight ωY , or methodological magnitude, associated 
with Y ∈ Y : 

ωY =

(
∑

k∈K

(

1
Ck

∑

X∈Ck

I{Y ∈ X}

))

∑

k∈K
I

{(
∑

X∈Ck

I{Y ∈ X}

)

> 0

}

The definition of ωY accounts for the fact that some features might be specific to a subset of clusters. We note that ωY is maximal when it is included 
in all articles of the subset of clusters where it is found, and 0 ≤ ωY ≤ 1. Finally, we define the repulsion force between for any pair (Y,Y′)∈ Y ×Y as 
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follows: 

σY,Y′ =(1 − JI(Y, Y′))×ωY × ωY′ 

We easily verify that 0 ≤ σY,Y′ ≤ 1. The formulation of σY,Y′ is inspired from the Coulomb repulsive force: for any pair of particles, the magnitude of 
their repulsion is proportional to the product of their individual magnitudes and is inversely proportional to their squared distance. In our case, ωY 

measures the average within-cluster proportion of articles including feature Y in their methodological framework, which approximates its relative 
importance in modeling choices. The parallel with the Coulomb repulsive force expresses the fact that the degree of attraction or repulsion between 
two features is deemed stronger if both features are frequently observed within clusters, but rarely observed together, i.e., belong to different paper 
clusters. 

Then, for each pair of features (Y,Y′)∈ Y × Y , we define its “divergence” score ΔY,Y′ ≥ 0 as follows: 

ΔY;Y′ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

y∈Y ,y∕=(Y,Y′)

(
σy,Y − σy,Y′

)2
√

Finally, we associate to each feature Y ∈ Y its “repulsion” score ρY , defined as the geometric mean of divergence computed over each pair (Y,
Y′)∈ Y × Y : 

The use of the geometric mean ensures the influence of extreme ΔY,Y′ values is smoothed out and ρY better captures the central tendency of the 
pairwise divergence scores associated with Y. We note that ρY= 0 if there exists at least one pair of features (Y,Y′)∈ Y ×Y such that ∀y∈ Y , y∕= (Y,
Y′), σy,Y = σy,Y′. This would imply that features Y and Y′ always occur together, which is indicative of a strong dependence between these features in 
terms of modeling choices. 

The cosine between covariates and the canonical components can be interpreted as their covariance (not their correlation as the variables are not 
centered). Yet, a variable which has maximal negative covariance with a canonical component accurately predicts its behavior, so it is equivalent to 
having maximal positive covariance. Thus, we square the cosine to obtain only positive values. Finally, in order to account for the share of the original 
variance explained by each canonical component, we weight the covariances by the associated eigenvalue divided by the sum of eigenvalues. 
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STÖCKL Fabian, SCHILL Wolf-Peter, ZERRAHN Alexander, 2021. Optimal supply chains 
and power sector benefits of green hydrogen. Nature, Scientific Reports. https://doi. 
org/10.1038/s41598-021-92511-6. 

STRACHAN Neil, et al., 2009. Soft-linking energy systems and GIS models to investigate 
spatial hydrogen infrastructure development in a low-carbon UK energy system. Int. 
J. Hydrogen Energy (34), 642–657. 

SUN, Haoran, et al., 2017. Hydrogen station siting optimization based on multi-source 
hydrogen supply and life cycle cost. Int. J. Hydrogen Energy 42 (26), 16313–16324. 

TAALBI Josef, NIELSEN, Hana, 2021. The role of energy infrastructure in shaping early 
adoption of electric and gasoline cars. Nat. Energy 6 (10), 970–976. 

TALEBIAN Hoda, HERRERA Omar, E., 2019. MERIDA Walter, “Spatial and temporal 
optimization of hydrogen fuel supply chain for light duty passenger vehicles in 
British Columbia,”. Int. J. Hydrogen Energy 44 (47), 25939–25956. 

TAO, Yuechuan, et al., 2020. Integrated Electricity and Hydrogen Energy Sharing in 
Coupled Energy Systems. IEEE Transactions on Smart Grid. 

THIEL, Daniel, 2020. A pricing-based location model for deploying a hydrogen fueling 
station network. Int. J. Hydrogen Energy 45 (46), 24174–24189. 

C. Pierre et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0925-5273(23)00323-7/sref38
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref38
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref38
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref39
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref39
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref40
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref40
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref40
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref40
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref41
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref41
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref41
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref42
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref42
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref43
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref43
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref44
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref44
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref44
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref45
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref45
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref45
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref46
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref46
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref47
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref47
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref47
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref1
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref1
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref1
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref48
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref48
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref49
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref49
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref49
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref50
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref50
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref50
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref51
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref51
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref52
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref52
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref53
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref53
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref54
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref54
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref54
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref55
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref55
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref55
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref56
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref56
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref56
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref57
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref57
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref57
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref58
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref58
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref59
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref59
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref59
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref60
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref60
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref61
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref61
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref61
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref62
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref62
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref62
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref63
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref63
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref63
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref64
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref64
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref65
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref65
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref66
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref66
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref66
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref67
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref67
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref67
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref68
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref68
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref68
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref69
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref69
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref69
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref70
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref70
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref70
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref71
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref71
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref71
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref72
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref72
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref72
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref73
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref73
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref73
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref74
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref74
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref75
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref75
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref75
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref76
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref76
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref77
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref77
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref77
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref78
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref78
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref78
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref79
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref79
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref79
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref80
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref80
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref80
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref81
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref81
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref82
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref82
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref82
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref83
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref83
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref84
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref84
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref84
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref85
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref85
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref85
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref86
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref86
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref86
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref87
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref87
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref87
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref88
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref88
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref88
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref89
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref89
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref89
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref90
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref90
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref90
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref91
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref91
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref92
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref92
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref93
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref93
https://doi.org/10.1038/s41598-021-92511-6
https://doi.org/10.1038/s41598-021-92511-6
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref95
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref95
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref95
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref96
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref96
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref97
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref97
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref98
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref98
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref98
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref99
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref99
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref100
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref100


International Journal of Production Economics 268 (2024) 109091

26

WANG, Bohong, et al., 2020. Implementing hydrogen injection in coal-dominated 
regions: supply chain optimization and reliability analysis. Energy 201. 

WON, Wangyun, et al., 2017. Design and operation of renewable energy sources-based 
hydrogen supply system: technology integration and optimization. Renew. Energy 
103, 226–238. 

WOO, Young-bin, et al., 2016. Optimization-based approach for strategic design and 
operation of a biomass-to-hydrogen supply chain. Int. J. Hydrogen Energy 41, 
5405–5418. 

WU, Xiong, et al., 2019. Optimal scheduling for microgrids with hydrogen fueling 
stations considering uncertainty using data-driven approach. Appl. Energy 253. 

XUN, Dengye, et al., 2022. Modeling the evolvement of regional fuel cell vehicle supply 
chain: implications for enhanced supply chain sustainability. Int. J. Prod. Econ. 249. 

YANG, Guoming, Jiang, Yuewen, Shi, Y.O.U., 2020. Planning and operation of a 
hydrogen supply chain network based on the off-grid wind-hydrogen coupling 
system. Int. J. Hydrogen Energy 45 (41), 20721–20739. 

Zheng, L.I., et al., 2008. Hydrogen infrastructure design and optimization: a case study of 
China. Int. J. Hydrogen Energy 33 (20), 5275–5286. 

C. Pierre et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0925-5273(23)00323-7/sref101
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref101
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref103
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref103
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref103
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref104
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref104
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref104
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref105
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref105
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref106
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref106
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref107
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref107
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref107
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref108
http://refhub.elsevier.com/S0925-5273(23)00323-7/sref108

	Beyond the “bottom-up” and “top-down” controversy: A methodological inquiry into hybrid modeling methods for hydrogen suppl ...
	1 Introduction
	1.1 Motivation
	1.2 Research gaps

	2 Data & methodology
	2.1 Selection of papers and classification features
	2.2 Selection of methodological features
	2.2.1 “Bottom-up” model types
	2.2.2 “Top-down” model types
	2.2.3 Optimization objectives
	2.2.4 Economic agents’ behavior and interactions
	2.2.5 Hydrogen supply chain composition and spatio-temporal characterization
	2.2.6 More specifically, HSC echelons are found to be characterized by the following sets of features respectively
	2.2.7 Uncertainty sources and treatment
	2.2.8 Government intervention
	2.2.9 Hydrogen demand modeling
	2.2.10 Interactions of HSC with other supply chains

	2.3 Summary statistics and main characteristics of the sample of HSC papers

	3 Clustering analysis & results
	3.1 Clustering methodology and performance comparison
	3.2 Identification of the most discriminatory features for HSC classification
	3.3 HSC paper categories and methodological pattern analysis
	3.4 Robustness checks

	4 A discussion of the opportunities and challenges for developing hybrid methodological approaches in HSC modeling
	4.1 Identification of “polarizing” methodological choices
	4.2 Existing hybrid approaches and future hybridization perspectives

	5 Conclusion
	5.1 Theoretical contribution
	5.2 Managerial implications
	5.3 Limitations and suggestions for future research

	Data availability
	Appendix Data availability
	References


