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/4 Foreword

Many content is inspired by the work conducted by

Yri-Amandine KAMBIRI,
Phd student ENAC-SUPAERO
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1) Energy transition : from World to Aviation

CC-BY 4.0 Nicolas MONROLIN 2024



4 Human society and energy
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Primary energy includes all energy
products not transformed, directly
exploited or imported.

It mainly includes

* crude oil, oil shale, natural gas, solid
mineral fuels

e biomass

» solar radiation, hydraulic energy,
wind energy, geothermic energy

* and the energy taken from uranium
fission.



Data source : Energy Institute, (Smil 2017), substitution method
OurWorldinData.org/energy | CC BY
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Energy transition
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-wwa Energy transition in developped countries
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IPCC 2022 : Mitigation of Climate Change,

Working Group Ill Contribution to AR6, Box 6.11, p690 )
CC-BY Nicolas MONROLIN 2024

= Strong decrease of fossil fuels

®» |ncrease of non-biomass renewables
(Wind, solar PV)

= Increase of electricity production

How to achieve this ?

» Electrification of Industry and transport
(when possible)
» Build new electricity production units

-> Electricity production will not balance
fossil fuel primary energy : efficiency gain,



Three definitions of primary energy from non combustible sources :

* Physical energy content:
heat for nuclear, geothermal / electricity for hydro-power, wind, solar PV
Ex : heat for nuclear, geothermal and electricity for hydro. Wind or tide/wave/ocean or solar PV

& » Direct equivalent:

1 kWh of secondary energy from non combustible =1 kWh of primary
Ex : electricity for nuclear

» Substitution:
account non-combustible energy as if substitued for combustible energy
Ex : 1 kWh of electricity (wind, solar, hydro, nuclear) is accounted as 2.63 kWh
(as if generated by a fossil fuel plant with an efficiency of 38%*)

IPCC, 2014 : Annex II: Metrics & Methodology’,
in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group Ill to AR5, p 1294
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-4 Energy at European level, 2022

Source: Eurostat, 2022
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b o Energy flow diagram 2022 3000 TWh
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Travelled Distance 2050*
(10° Veh.km)

Energy consumption
Combustion engine
(liquid fuel TWh)

Energy consumption
Electric cars
(electricity TWh)

Light vehicles 4500 3100 950
Trucks, vans 580 1100 ?
Total 5080 4200 ?
 Combustion engine cars Distance (m)
» efficiency:n=0.26 (C4;=71/100 km = 70 kWh/100km) Energy (J)

e Electric cars

 efficiency:n=0.85 (C,=21kWh/100 km)

_ Drag #Distance
1= Energy input

*Krause, J. et al. (2020) ‘EU road vehicle energy consumption [...]°, Energy Policy

CC-BY Nicolas MONROLIN 2024
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Energy Pathways :
Combustion cars and Electric cars

A
; _ Tank 3.85
Crude Qil 4.18 Refinery 3.85

Renewable Electricty 1.46 I Grid 1.38

Useful Work I

I/C Powertrain 1.00

Electric Powertrain
1.00

Batteries

Useful Work
1.18




‘4 Road transport and aviation

ROAD transport Air transport

« Better powertrain efficiency  Which powertrain efficiency ?
 «Onboard energy » storage in batteries  + Onboard Energy storage must be as

« Nearly the same useful work « light » as possible

e Not the same useful work depending on
airplane energy vector (mass)

=>Rely on Renewable Electricity

=>Rely on Renewable electricty ...
(more than ~950 TWh)

But how much ?

EU 27 electricity production (2022) : 2500 TWh



2) Aviation Energy Pathways

CC-BY 4.0 Nicolas MONROLIN 2024
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‘4 Aviation energy pathways

Energy supply Airplane
« Well to tank » « Tank to thrust »
AN AN
r I
P .. Useful Wark ?@
A GHZ
o Biofuel Storage Powertrain / /
)f( Renewable Electrofuel
Jl Jl electricity and Electricity
biomass
_:('3:_
@ Tank Turbofan
Batteries Turboprop
Electric motor
Fuel Plant Fuel Cell + e-motor

Electrolyser
Grid



‘74 Aviation energy pathways

Ground side Airplane side

* Renewable electricity production « Conventional airplane

o (electric grid) e Conventional airplane* (SAF)
« Electrolyzer (H2) * biofuels

.  Electrofuels
Tanks and refueling * Hydrogen airplane

Biofuels “refinery” « Combustion/fuel cell+electric motor

* Land use (farming) * Liquid/gaseous storage

» Use of organic wastes . :

 Electric airplane (batteries)

Electrofuels plants

» Direct air capture (DAC)

e Concentrated source

» Fisher-Tropsch/methanol



Kerosene O
| /C engine liquid fuel shaft
I/C engine
Kerosene r—35%
Hydrogen O
| / C en g | ne liquid fuel shaft
I/C engine
H, 1=35%
Hydrogen
Elel Ce].l H; gas ) shaft
¢ Motor
H, N=55% 1—95%
Battery F—
Motor
Battery n=95%

Hepperle, M. (2012) Electric Flight — Potential and Limitations

Kerosene combustion

Hydrogen combustion

Hydrogen + Fuel Cell +
Electric powertrain

Batteries + Electric
powertrain
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"4 Airplane design matters !

Mass of stored energy
Emission/LHV

Range equation

L/on LHV
(fuels) Range = /pn In{1+
g Mend of cruise
L/ n E* Emission/E*
(batteries) Range = -2 -
g Mairplane
LAV or E* (W ke

Kerosene 43

Hydrogen 120* * Tank mass not included gravimetric index

Methane 50* Gl = M,

my, +m
Battery (Li-ion 350 Wh/kg)) 1.3 Hy tank

CC-BY 4.0 Nicolas MONROLIN 2024 20



« CADO airplane database »

230 civil transport airplane
database

Avalaible at recherche.data.gouv:
https://doi.org/10.57745/LLRJOQ0

CADO airplane database
=
vy
= == * MONROLIN, Nicolas; DRUOT, Thierry; PETEILH, Nicolas; ROCHES, Pascal; KAMBIRI, Yri-Amandine, 2024, ;
"CADOQ airplane database", hitps://doi.org/10.57745/LLRJOO, Recherche Data Gouv, V1, =
KRR UNF:6:PrOS8wpPSswguppl7 TJIRg== [fileUNF] °©

Citer le jeu de Pour en apprendre davantage sur le sujet, consulter le document
données ~ Data Citation Standards [en].

CC-BY 4.0 Nicolas MONROLIN 2024

?ﬁ?‘? Conceptual airplane design tool

« Generic Airplane Model »
Python library
Available on Gitlab

https://gitlab.com/m6029/genericairplanemodel.qit

Regression OWE - MTOW

175000 A
150000
-
125000 - <
100000
75000 -
50000 4 + general
commuter
25000 + regional .
« short_medium
« long range
0 T T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000 400000

mtow (kg)
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https://doi.org/10.57745/LLRJO0
https://gitlab.com/m6029/genericairplanemodel.git

/4 Airplane « Tank to thrust »

e Designrange : 5500 km
e Mach 0.78
e Cruise altitude 35 000 ft

Energy carrier Cd MTOM
(kWh/pax/100 km) (t)

S

Kerosene 19.3 (2 L/pax/100 km) 73.6 60.2
LH2 (combustion) 30.0 88.8 82.5
LH2 (fuel cell) 35.5 130 122
CH4 21.9 80.9 68

DO NOT TAKE THIS RESULTS FOR GRANTED !

CC-BY 4.0 Nicolas MONROLIN 2024

CC-BY-SA 3.0 Pedro Aragdo

Payload max
)

19.8
19.8

19.8

19.8
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& Influence of the gravimetric index

4000 km - general
4.5 - 6000 km commuzs
regiona
& short medium
4.0 - 10000 km * long_range
. reference aircraft

= 12000 km
E 3.5 - ‘j( m
— - H
E #14000°km Gl = 2
% 0] GI=0.7 My, + Meank
a
~— 2.5
=)
5
% 201

1.5

5 10 15 20 25 30 35
PK/OEW(pax.km/kg)
PK = design pax capacity
X
design range Kambiri et al. (2024) ‘Energy consumption of Aircraft with new propulsion [...]", AIAA SCITECH 2024
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4 Well to tank

 Biomass -> kerosene : biofuel
Biomass -> methane : biogas

Electricity + CO2 -> kerosene : electrofuel

Electricity + water -> Hydrogen

Electricty to batteries

CC-BY 4.0 Nicolas MONROLIN 2024
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a4 Energy pathways models

Soler et Schmidt, « E-Fuels: A Techno-Economic Assessment of EU Domestic Production and Imports towards 2050 », 2024
S. Zs. Al Ghafri et al., Energy Environ. Sci., 2022

S. Krasae-in, J. H. Stang, et P. Neksa, International Journal of Hydrogen Energy, 2010

@\ .Hea0.51 MJ .COZ DAC

>
Q2 016 W Kerosene 1M Electrofuel (FT + DAC)

RWGS + Fisher-Tropsch + Hydrocracking
2.64 MJ Electrictty 1.43 MJ

2.11 MJ Electrolyser Electricity
Hydrogen DAC : Direct Air Capture
Efuel FT : Fischer Tropsch

ue RWGS : Reverse Water Gas Shift
Heat or losses
0.306 MJ 0_306 MJ lost
Ligquefaction
1.83 MJ =iy ElectrolySER STOra0e
1.49 MJ LH2 1MJ

Liquid Hydrogen



Sankey diagrams
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n O n , . . c l R 0.09 018 005 012 143 = E-Jet Fuel
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‘Green hydrogen pathways, energy
efficiencies, and intensities for ground, air,
and marine transportation’, Joule, 8(8),

pp. 2190-2207.
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3) Carcassonne airport : an example

CC-BY 4.0 Nicolas MONROLIN 2024

30



?ﬁﬁ Case study : Carcassonne airport

Carcassonne network in 2022. Airplanes operated in 2022

737-800
winglets

Design range 5400

(km)
Offered seats 160
Energy type kerosene

TWO scenarios :
e Full Electrofuel aircraft fleet

* Full Liquid hydrogen aircraft fleet

Source : OAG database (Official Airline Guide)
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ENAC Carcasonne airport: Result

Electricity and energy needed to refuel the Carcassonne fleet

Efuel tank gravimetric index: 1 . ] .
Liquid hydrogen tank gravimetric index: 0.4

| |

3401t or 41GWh Electrofuel 2299t or 77GWh LH2 aircraft
111 GWh aircraft fleet 138 GWh fleet
70GWh 61GWh
Electrofuel efficiency | gneine efficiency: 30% Liquid hydrogen Engine efficiency: 30%
8 y: efficiency

DO NOT TAKE THIS RESULTS FOR GRANTED !

I Annual efuel consumption Annual electricity need Annual LH2 consumption



‘w4 Carcasonneairport: Result

Energy-self-sufficiency scenario 1: Using airport resources

Electrofuel LH2 aircraft
aircraft fleet fleet
111 GWh 138 GWh
A\ _{ -:é:-.-- \ “I\ -: : :-..l
/\l\ A EmWm /\l AW
l Al _I_ AN W
21 or 49 ha 25 or 61 ha

» General assumptions:
e Solar panel efficiency: 0.15

* Nominal power of an onshore wind
turbine: 3AMW
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‘-4 Carcasonneairport: Result

Energy-self-sufficiency scenario 2: Using Aude department

resources

Electricity production and consumption in Aude (GWh)

7000
oo mmmm —mrmrmmms \
5000
4000 Energy surplus
3000 y 3415.2 GWh

2000

1000
Electricity production Electricity consumption
B Solar Wind turbine Hydroelectric Electricity consumption

Trend scenario in 2030
Source : Aude Department Projet

Electrofuel LH2 aircraft
aircraft fleet fleet
111 138
GW GW

Between 3% and 4% of Aude's
surplus energy production (trend
scenario)
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+-a French airportin 2016

Efuel consumption estimation based on the French air traffic data in
2006
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Conclusion: Small regional airports have the potential to achieve energy self-sufficiency, taking into account local weather
conditions such as solar irradiation and wind.




4) Toward Air Transport System (ATS) analysis

CC-BY 4.0 Nicolas MONROLIN 2024
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Air transport system

Network
A/C ca.talog design o
de5|g n e R I - — ) / Weather, any
\\_C_)EM ) (: D:‘spaifrhcr) QAW‘E?,‘FEE’;) ) Ground hana'f-fni ) ATM [ unepected
N Establish airline and ger AOC o )
Analyse market requirements A Undergo dispatcher course ) Recruit and teain staff \ Recruit and train staff
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Obtain aircrafi

LY
- 7
and its CoA

I\
L
@nd manufacture LDa

Sales and marketing

8et up the equipments

S
LY
r s .
Check condition of equipment Recruit and train staff \
’ repare route network and plann ) . ’
/ R Prepare/get approval for new rout P P Arrive at the aircraft Receive and approve flight plans \
} Get authority clearance 7 T
Prapara/submit flight plan to authorky o ] 3 Connect required equipment Create staff schedule
I\ et airport clearance I\
7 y 7 L
Post sale services \ Submit flight plan to pilot Set marketing and sall ticket " Establish contact with flight crew Check METAR updates )
LY - LY
4 7 5 rd 7

Maintain design airworthiness Receive acknowledgement from pilo Prepare flight crew roster 4 Disengage equipments Update airport and airline
Y 3! (Y A
! ’ Communicate with ground stafl . . . ’

Preserve the documents - \ Initiate pushback Provide required clearance A
Prepare and submit flight ]3]:11'[f . > . 7
3 Clearance during pushback Provide departure clearance
Passenger check-in and Baggage handNng 3
i\
T Ensure safe engine startu
Proceed to boarding g P ~
- y | Flight
Provide boarding infrastructure . Proceed to boarding Propare cahin for departure
\
Provide ground handling facitity Y !
LY

Wait in boarding zone
Immigration and security facility
Give Certificate of Release to Service - N .

Pushback and engine start up

LY
L

Inform pilots and record in log books y
It

Pass immigration
Easy access to passenger

Facilitate boarding

Establish ATC communication

3
L4
Preparer the cabin for passenger
5

Receive the flight plan

¥

Pass security check Board the flight
3 Route request
Carry out maintenance tasks Check in Pre-flight briefing
3 Airside and landside operations
Receive aircraft details - 7
Slot allocation
Start the shift

Board the flight

Arrive at the airport

~5

Space

Pre-flight briefing and BA test

Arrive at the airport
Airport marketing

Get approval as per Part 66

Boolk the flight
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Staff recruitment

v
7
Arrive at the airport

Receive training under Part 147

Market study

Construction of airport

L}
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Material
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7
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Policy

MDA of the air transport system

A/C TLARs

Travel
Demand

A/C catalog
design

Network

Energy mix

design

) Fleet allocation

and sizing

\ 4

Airports
sizing

A 4

ATS cost for the society

ATM
sizing

Space, material
and energy
synthesis

A 4
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Passenger travel
conditions estimation
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‘4 A set of uncertainty to be quantified

Technology uncertainty:

 Hydrogen tank : GI [0.2; O.6]
Electrolyzer : efficiency [0.5; 0.7] ?
DAC heat source ?

Fischer-Tropsch efficiency ?

Battery energy density in the future ?

Process uncertainty
 Airplane design

e Power plant design ?
 Electrolyzer / FT design ?



ENAC Conclusion

180,000 TWh
160,000 TWh

140,000 TWh

* Energy transition is especially challenging for |-
anation. 100,000 TWh

DDDDDDDDDD

(energy carrier)

 Which energy pathway for which mission ?

« Comparision of pathways is difficult because
of large uncertainties

=> Large green electricity demand

=> LCA to assess sustainability

CC-BY 4.0 Nicolas MONROLIN 2024

1980

2000 2023

40



« This grand book [the universe] [...] is written
in the language of mathematics>»

Galileo Galilei, The Assayer, 1623

400 years

« | know and respect the opinion of scientists.
The problem is that there is real life.»

Patrick Pouyanné, head of TotalEnergies, 2023

CC-BY Nicolas MONROLIN 2024
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