

Life Cycle Assessment of Air Transport Systems

From aircraft design to the evaluation of transition scenarios for the aviation sector.

Félix POLLET - Postdoctoral researcher at ISA

Workshop ISA 1st July 2024

Principles of Life Cycle Assessment

Aviation modelling tools

4

- 1. Introduction
- 2. LCA for aircraft design
- 3. LCA for transition scenarios
- 4. Conclusion & perspectives

Eco-design of UAVs

Introduction

Aircraft Design

Transition Scenarios

Environmental module

Aircraft Design

Transition Scenarios

Case study

Research questions

- 1. Critical environmental impacts and main contributors?
- 2. Design implications of mitigating these environmental impacts?

Introduction

Aircraft Design

Transition Scenarios

Critical impacts

Sensitivity to technology

10

Technology assumptions

Sensitivity to sizing objective

Introduction

Aircraft Design

Transition Scenarios

Future work

Introduction

Aircraft Design

Transition Scenarios

- 1. Introduction
- 2. LCA for aircraft design
- 3. LCA for transition scenarios
- 4. Conclusion & perspectives

AeroMAPS

Numerous publications of air transport prospective scenarios...

AeroMAPS: An open-source framework for performing multidisciplinary assessments of prospective scenarios for air transport.

Introduction

Aircraft Design

Transition Scenarios

Perspectives

14

Architecture of AeroMAPS

Environmental module

Case study

~~~

Air traffic



Aircraft fleet & operations



Global socioeconomic pathway



Environmental indicators

+3% per year

New architectures with 20% efficiency gains in 2035

6.1% operational gains  $2020 \rightarrow 2050$ 

 $82.4 \rightarrow 85\%$  load factor increase in 2050



Energy mix

SSP2 « Middle of the road » (historical trends) Without climate policy Modelled with REMIND IAM

ReCiPe methods <sup>[1]</sup> 21 impact indicators Scenario 1 - Fossil 100% fossil kerosene

#### Scenario 2 - ReFuelEU

|          | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------|------|------|------|------|------|
| Fossil   | 94%  | 80%  | 66%  | 58%  | 30%  |
| Biofuels | 4.8% | 15%  | 24%  | 27%  | 35%  |
| E-fuels  | 1.2% | 5%   | 10%  | 15%  | 35%  |

#### Scenario 3 – ReFuelEU Solar

ReFuelEU with e-fuels produced from photovoltaic electricity

[1] Huijbregts et al., ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level, 2017

Introduction

Aircraft Design

**Transition Scenarios** 



### **Midpoint impacts**

Scenario 1 - Fossil





Scenario 2 – ReFuelEU

Scenario 3 – ReFuelEU Solar



Introduction

Aircraft Design

Transition Scenarios



### Sensitivity analysis

#### Sensitivity to electricity mix (in 2050)

![](_page_18_Figure_3.jpeg)

![](_page_18_Picture_4.jpeg)

Aircraft Design

**Transition Scenarios** 

![](_page_19_Picture_0.jpeg)

### **Endpoint impacts**

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_3.jpeg)

#### Endpoint results in 2050

Introduction

Aircraft Design

**Transition Scenarios** 

![](_page_20_Picture_0.jpeg)

### Influence of socio-economics & climate policy

![](_page_20_Figure_2.jpeg)

Fig.: Endpoint results for Scenario 2 (ReFuelEU) and different SSP/climate policies (modelled by the REMIND IAM)

![](_page_20_Picture_4.jpeg)

Aircraft Design

**Transition Scenarios** 

![](_page_21_Picture_0.jpeg)

# **Conclusion & perspectives**

![](_page_22_Picture_0.jpeg)

### **Conclusions & perspectives**

![](_page_22_Figure_2.jpeg)

## Thank you

#### **Publications**

- Pollet, F., Budinger, M., Delbecq, S., Moschetta, J.-M., & Planès, T. (2023). Environmental Life Cycle Assessments for the Design Exploration of Electric UAVs. Proceedings of the Aerospace Europe 2023 Conference
- Pollet, F., Planès, T., & Delbecq, S. (2024). A comprehensive methodology for performing prospective Life Cycle Assessments of future air transport scenarios. Submitted to the 34th Congress of the International Council of the Aeronautical Sciences

#### felix.pollet@isae-supaero.fr

![](_page_24_Picture_0.jpeg)

## Aircraft design tools

![](_page_24_Picture_2.jpeg)

## Sensitivity to weighting of environmental objective

![](_page_25_Figure_1.jpeg)

## Sustainability of last-mile delivery

![](_page_26_Figure_1.jpeg)

Fig.: Share of safe operation space consumed by last-mile delivery as a function of vehicle carbon intensity and usage intensity

![](_page_27_Picture_0.jpeg)

### **AeroMAPS**

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

Aircraft Design

Transition Scenarios

![](_page_28_Picture_0.jpeg)

#### Sensitivity analysis

#### Sensitivity to electricity mix (in 2050)

![](_page_28_Figure_3.jpeg)

Aircraft Design

**Transition Scenarios** 

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_1.jpeg)