Welfare Effect of a Carbon Tax in the Long-Distance Passenger Market

ISA Workshop #3

Marc Ivaldi
Toulouse School of Economics
Institute for Sustainable Aviation

Joint work with

Frédéric Cherbonnier TSE Catherine Muller-Vibes TBS Karine Van der StraetenTSE

Motivation

Transportation

- 25% of all EU GHG emissions
- The only sector with growing sources of GHG

Motivation

Transportation faces major environmental challenge

- Technological solutions are decades away
- Consider market-based measures

Motivation

Market-based measures

- New cars to be zero-emissions by 2035
- Fuel costs
 - EU Emissions Trading System (ETS)
 - Carbon tax
- Alternatives
 - Banning cars in center cities
 - Expanding rail infrastructure

Objective

Evaluating the welfare effect of a carbon tax

- Different levels of the carbon tax
- Different values of carbon
 - € 190 in 2024 (U.S. EPA)
 Report on the Social Cost of Greenhouse Gases: Estimates Incorporating Recent Scientific Advances
- Adding the impact of electric cars

in the context of intermodal competition in the long distance passenger market

Empirical literature

Relatively scarce

• Hideki – Miyoshi, Transportation Research D, 2017

• Jiang, Transportation Research B, 2021

Bolic – Laplace – Lenoir – Paul – Roucolle (2024)

Empirical literature

Related models

- Cherbonnier Ivaldi Muller-Vibes -Van Der Straeten
 "Competition For Versus In the Market of Long-Distance Passenger Rail Services"
 Review of Network Economics, 2018
- Ivaldi Vibes
 "Price Competition in the Intercity Passenger Transport Market: a Simulation Model"
 Journal of Transport Economics and Policy, 2008

Methodology

- 1. Calibration of a model of intermodal competition
 - One data point in 2019 for one OD market
 - Oligopoly with differentiated products

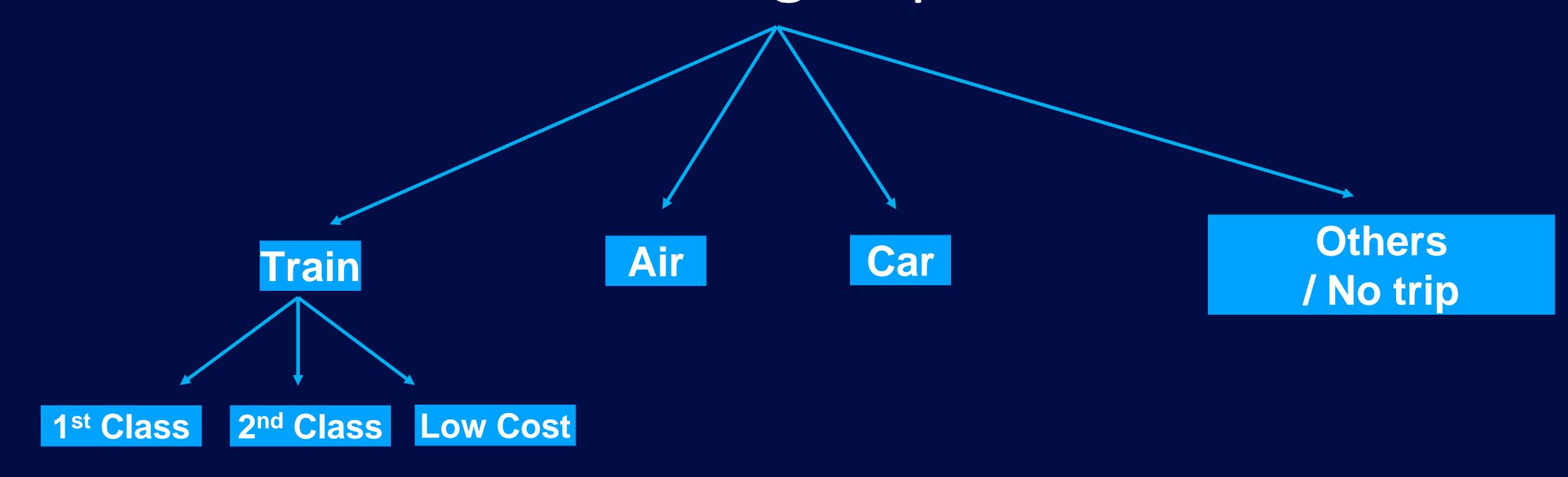
2. Simulations

Main results

on the welfare effects of a carbon tax

- Carbon tax at € 190 is welfare-neutral
- Electric car is strongly welfare enhancing
 - Large decrease in carbon externalities
- Rail is not a powerful carbon-externalities killer
 - Subsidies remain necessary to rail

Data


- Paris Marseille, around 750 km
- Market for leisure trips in 2019

Data

Mode	#Passengers	Price	Marginal Cost	Market Share %
Rail 1 st Class	451067	62.3	45	8.3
Rail 2 ^{sd} Class	1407107	53.4	38	25.9
Rail Low Cost	1260150	30.5	24	23.2
Air	591438	110.7	70	10.9
Car	1649816	88.6	88.6	30.4

Model

Demand side: nested-logit specification

$$ln(s_j) - ln(s_0) = \psi_j - hp_j + \sigma \ln(s_{j|rail}) \quad \text{for } j = 1,2,3$$

Calibration

Supply side: Price competition

- Car = non strategic mode
 - Price = marginal cost
- Air = profit maximizing mode
- Train = profit maximizing + regulatory constraints

$$\max_{p_1, p_2, p_3} \sum_{i=1}^{3} (p_i - c_i) s_i N - \mu \sum_{i=1}^{3} (p_i s_{i|rail} - \overline{p}) - \lambda (p_3 - \overline{p}_3)$$

Calibration

Solving for the unknown parameters

- Step 1
 - Solving the FOCs associated with price competition
- Parameters $\mu \lambda \sigma h$
 - Assuming
 - Outside good market share = 50%
 - Different behavior for the train operator
- Step 2
 - Solving the demand equations for the quality indexes
 - Parameters

Calibration

Mode	Own price elasticity	Quality index
Rail 1 st Class	-8.12	0.93
Rail 2 ^{sd} Class	-4.82	0.79
Rail Low Cost	-2.94	0.19
Rail	-0.83	
Air	-2.72	0.67
Car	-1.95	1.12

Simulation

Data for the reference year 2019 on Paris-Marseille

Mode		Carbon tax or ETS value		Marginal cost €	% Carbon cost
Air	152	25	3.8	50	7.6
Car	66.1	44.6	2.95	88.6	3.3
Rail	0				

Simulations

- Reference scenario
 - Carbon taxes at the reference values
 - Carbon tutelary value = € 190

Scenarios

- 1. Carbon tax = € 130
- 2. Carbon tax = € 190
- 3. Carbon tax = € 250
- 4. Carbon tax = € 190 + electric vehicle
- 5. Carbon tax = € 190 + deregulation

Scenario 1: Carbon tax = € 130

Mode	Change in prices %	Change in market share %	Change in CO ₂ %
Rail 1 st Class	0.0	+4.4	0.0
Rail 2 nd Class	0.0	+3.9	0.0
Rail Low Cost	0.0	+4.1	0.0
Air	+13.8	-30.0	-30.0
Car	+6.3	-10.0	-10.0

Scenario 1: Carbon tax = € 130

Change	M€	%
Consumer Surplus	-16.4	-5.8
Profit	-6.0	-9.7
Train	+1.5	+4.1
Air	-7.5	-31.2
CO2 externalities	-7.2	-19.1
Transfer to State	+13.8	+194.0
Welfare	-1.4	-0.4
Welfare with cost of public fund	1.4	+0.4

 Δ Welfare = Δ CS + Δ Profit + Δ TaxCO2- Δ CO2Value

 $\Delta Welfare = \Delta CS + \Delta Profit + (1 + 0.2)\Delta TaxCO2 - \Delta CO2 Value$

Scenario 2: Carbon tax = € 190

Mode	Change in prices %	Change in market share %	Change in CO ₂ %
Rail 1 st Class	0.0	+6.9	0.0
Rail 2 nd Class	0.0	+6.1	0.0
Rail Low Cost	0.0	+6.5	0.0
Air	+21.7	-43.1	-43.1
Car	+10.9	-17.2	-17.2

Scenario 2: Carbon tax = € 190

Change	M€	%
Consumer Surplus	-25.4	-8.8
Profit	-8.3	-13.5
Train	+2.4	+6.3
Air	-10.7	-44.5
CO2 externalities	-10.9	-28.9
Transfer to State	+19.8	+278.0
Welfare	-3.1	-0.95
Welfare with cost of public fund	0.9	0.29

Scenario 4: Carbon tax = € 190 + Electric car

Mode	Change in prices %	Change in market share %	Change in CO ₂ %
Rail 1 st Class	0.0	+1.1	0.0
Rail 2 nd Class	0.0	+1.0	0.0
Rail Low Cost	0.0	+1.1	0.0
Air	+21.7	-45.9	-45.9
Car	-4.0	+10.9	-100.0

Scenario 4: Carbon tax = € 190 + Electric car

Change	M€	%
Consumer Surplus	-4.4	-1.5
Profit	-11.0	-17.8
Train	+0.4	+1.1
Air	-11.4	-47.3
CO2 externalities	-28.6	-75.5
Transfer to State	+2.1	+30.0
Welfare	+15.3	+4.8
Welfare with cost of public fund	+15.7	+5.0

Scenario 5: Carbon tax = € 190 + Deregulation

Mode	Change in prices %	Change in market share %	Change in CO ₂ %
Rail 1 st Class	+46.1	+47.0	0.0
Rail 2 nd Class	+57.4	-24.4	0.0
Rail Low Cost	+129.4	-96.6	0.0
Air	+22.0	-31.7	-31.7
Car	+10.9	+0.2	+0.2

Scenario 5: Carbon tax = € 190 + Deregulation

Change	M€	%
Consumer Surplus	-103.8	-36.3
Profit	+35.9	+57.9
Train	43.8	+116.0
Air	-7.9	-32.9
CO2 externalities	-5.4	-14.2
Transfer to State	+25.3	+356.0
Welfare	-37.2	-11.7
Welfare with cost of public fund	-32.2	-10.0

Concluding remarks

Evaluating the welfare effect of a carbon tax

- Carbon tax at € 190 is welfare-neutral
- Electric car is strongly welfare enhancing
 - Large decrease in carbon externalities
- Rail is not a powerful carbon-externalities killer
 - Subsidies remain necessary to rail

Concluding remarks

Evaluating the welfare effect of a carbon tax

- Simple tool
- Results look realistic

Thank your for your attention